Log in

Experimental study on strength and microstructural properties of hydrous magnesium alkalization in colligation with tropical laterite soil at ambient temperature

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Recently, the alkalization of various materials for solidifying vulnerable soil has become increasingly prevalent to improve their structural integrity and strength properties. However, the characterization of laterite soil solidified by alkalizing strong electrolytes has been limited. This research paper presents an innovative way of utilizing an alkaline activator and bischofite (MgCl2·6H2O) to initiate the activation of silica and alumina constituents and polymerization for the physio-chemical characterization of laterite soil and determine the optimal design mix. Standard compaction and uniaxial strength (UCS) were assessed for mechanical features, and mechanisms contributing to solidification were assessed using SEM, EDS, and FTIR. The alkalization of bischofite has significantly altered the mechanical characteristics of the sample. The UCS test findings at ambient room temperature revealed that a sample containing an alkaline activator proportion of 0.75, an activator-to-bischofite proportion of 0.9, and a 5% bischofite by dry soil weight of soil is the optimal mix to ameliorate the potency of the laterite soil. The development of hydroxyl groups on kaolinite edges and cation replacement decreased pH with the curing period, promoting structural modification in physiochemical analysis. The solidification methods created a bonding gel of hydrated magnesium silicate (M–S–H) compounds, as shown by SEM micrographs and EDS spectra. Additionally, the FTIR finding affirmed the formation of magnesium hydration products in the spectral range of 1600 to 450 cm−1 with silicate, aluminum, and magnesium chain polymerization evolution. Finally, the study demonstrated the potential of bischofite-alkalization to modify the physiochemical and micro-structural features of weak laterite soil to be utilized in various construction projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

SEM:

Scanning Electron Microscopy

EDS:

Energy dispersive Spectroscopy

FTIR:

Fourier-transform spectroscopy

C-A-H:

Hydrated-Calcium-Aluminate

C-S-H:

Hydrated-Calcium-Silicate

M-A-H:

Magnesium Aluminate Hydrate

M-S-H:

Magnesium Silicate Hydrate

NS:

Sodium Silicate

NH:

Sodium Hydroxide

K:

Alkaline Activator proportion (NS/NH)

M:

Bischofite

K/M:

Alkaline Activator/Bischofite proportion

MDD:

Target Density

OMC:

Optimal water

References

  1. Townsend F C 1985 Geotechnical characteristics of residual soils. J. Geotech. Eng. 111 (1)

  2. Latifi N, Rashid A S A, Ecemis N, Tahir M M and Marto A 2016 Time-dependent physicochemical characteristics of Malaysian residual soil stabilized with magnesium chloride solution. Arab. J. Geosci. 9(1): 1–12

    Article  CAS  Google Scholar 

  3. Ayila A A and Varudu R M 2023 Investigation of mechanical and micro-structural properties of weak laterite soil treated by bischofite. Sādhanā 48(3): 128. https://doi.org/10.1007/s12046-023-02172-6

    Article  Google Scholar 

  4. Goswami R K and Singh B 2005 Influence of fly ash and lime on plasticity characteristics of residual lateritic soil. Gr. Improv. 9(4): 175–182. https://doi.org/10.1680/grim.2005.9.4.175

    Article  Google Scholar 

  5. Osinubi K J and Nwaiwu Æ C M O 2008 Desiccation-induced shrinkage in compacted lateritic soils. Geotech. Geol. Eng. 26(7): 603–611. https://doi.org/10.1007/s10706-008-9193-4

    Article  Google Scholar 

  6. Gidigasu M D 1976 Laterite soil engineering pedogenesis and engineering principles. Elsevier Scientific Publishing Company, New York

    Google Scholar 

  7. Hashemi M A, Massart T J, Salager S, Herrier G and François B 2015 Pore scale characterization of lime-treated sand-bentonite mixtures. Appl. Clay Sci. 111: 50–60. https://doi.org/10.1016/j.clay.2015.04.001

    Article  CAS  Google Scholar 

  8. Saadeldin R and Siddiqua S 2013 Geotechnical characterization of a clay-cement mix. Bull. Eng. Geol. Environ. 72(3–4): 601–608

    Article  Google Scholar 

  9. Sukmak P, Horpibulsuk S, Shen S L, Chindaprasirt P and Suksiripattanapong C 2013 Factors influencing strength development in clay-fly ash geopolymer. Constr. Build. Mater. 47: 1125–1136. https://doi.org/10.1016/j.conbuildmat.2013.05.104

    Article  Google Scholar 

  10. Amadi A A and Okeiyi A 2017 Use of quick and hydrated lime in stabilization of lateritic soil: comparative analysis of laboratory data. Int. J. Geo-Eng. 8(1)

  11. Hassan W H W, Rashid A S A, Latifi N, Horpibulsuk S and Borhamdin S 2017 Strength and morphological characteristics of organic soil stabilized with magnesium chloride. Q. J. Eng. Geol. Hydrogeol. 50(4): 454–459. https://doi.org/10.1144/qjegh2016-124

    Article  CAS  Google Scholar 

  12. Blanck G, Cuisinier O and Masrouri F 2014 Soil treatment with organic non-traditional additives for the improvement of earthworks. Acta Geotech. 9(6): 1111–1122. https://doi.org/10.1007/s11440-013-0251-6

    Article  Google Scholar 

  13. Sanni S H and Khadiranaikar R Byear ? Performance of alkaline solutions on grades of geopolymer concrete http://www.ijret.org

  14. Shi C and Fernández-Jiménez A 2006 Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. 137(3): 1656–1663

    Article  PubMed  CAS  Google Scholar 

  15. Cristelo N, Glendinning S and Pinto A T 2011 Deep soft soil improvement by alkaline activation. Proc. Inst. Civ. Eng. Gr. Improv. 164(2): 73–82

    Google Scholar 

  16. Cristelo N, Glendinning S, Fernandes L and Pinto A T 2012 Effect of calcium content on soil stabilisation with alkaline activation. Constr. Build. Mater. 29: 167–174

    Article  Google Scholar 

  17. Zhang M, Guo H, El-Korchi T, Zhang G and Tao M 2013 Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 47: 1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017

    Article  Google Scholar 

  18. Sukmak P, Horpibulsuk S and Shen S L 2013 Strength development in clay-fly ash geopolymer. Constr. Build. Mater. 40: 566–574

    Article  Google Scholar 

  19. Abdeldjouad L, Asadi A, Nahazanan H, Huat B B K, Dheyab W and Elkhebu A G 2019 Effect of clay content on soil stabilization with alkaline activation. Int. J. Geosynth. Gr. Eng. 5(1): 4. https://doi.org/10.1007/s40891-019-0157-y

    Article  Google Scholar 

  20. Sargent P 2015 The development of alkali-activated mixtures for soil stabilisation. Handb. Alkali-Activated Cem. Mortars Concr. Woodhead Publishing, Oxford 555–604 https://www.sciencedirect.com/science/article/pii/B9781782422761500216

  21. Yu J, Chen Y, Chen G and Wang L 2020 Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization. Eng. Geol. 264 105316 https://www.sciencedirect.com/science/article/pii/S001379521930153X

  22. Duxson P, Fernández-Jiménez A, Provis J L, Lukey G C, Palomo A and Van Deventer J S J 2007 Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9): 2917–2933

    Article  ADS  CAS  Google Scholar 

  23. Bagheri A, Nazari A, Sanjayan J G and Rajeev P 2017 Alkali activated materials vs geopolymers: role of boron as an eco-friendly replacement. Constr. Build. Mater. 146: 297–302. https://doi.org/10.1016/j.conbuildmat.2017.04.137

    Article  CAS  Google Scholar 

  24. Davidovits J 1991 Geopolymers: inorganic polymeric new materials. J. Therm. Anal. Calorim. Akadémiai Kiadó, co-published with Springer Science+ Business Media BV … 37 (8): 1633–1656

  25. Pourakbar S, Asadi A, Huat B B K, Cristelo N and Fasihnikoutalab M H 2017 Application of Alkali-activated agro-waste reinforced with wollastonite fibers in soil stabilization. J. Mater. Civ. Eng. 29(2): 1–11

    Article  Google Scholar 

  26. Turner L K and Collins F G 2013 Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43: 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

    Article  Google Scholar 

  27. Horpibulsuk S, Suksiripattanapong C, Samingthong W, Rachan R and Arulrajah A 2016 Durability against wetting–drying cycles of water treatment sludge–fly ash geopolymer and water treatment sludge–cement and silty clay–cement systems. J. Mater. Civ. Eng. 28(1): 04015078

  28. Sarkar G and Siddiqua S 2017 Preliminary studies of hydraulic and mechanical behavior of nanoparticle-based light backfill exposed to pore fluid salinity. J. Hazardous, Toxic, Radioact. Waste 21(2): 1–8

  29. Latifi N, Rashid A S A, Siddiqua S and Horpibulsuk S 2015 Micro-structural analysis of strength development in low- and high swelling clays stabilized with magnesium chloride solution: a green soil stabilizer. Appl. Clay Sci. 118: 195–206. https://doi.org/10.1016/j.clay.2015.10.001

    Article  CAS  Google Scholar 

  30. Latifi N, Horpibulsuk S, Meehan C L, Abd Majid M Z, Tahir M M and Mohamad E T 2017 Improvement of problematic soils with biopolymer: an environmentally friendly soil stabilizer. J. Mater. Civ. Eng. 29(2): 04016204

    Article  Google Scholar 

  31. Murty V R and Krishna P H 2006 Stabilisation of expansive clay bed using calcium chloride solution. Gr. Improv. 10(1): 39–46. https://doi.org/10.1680/grim.2006.10.1.39

    Article  MathSciNet  Google Scholar 

  32. Shackelford C D, Benson C H, Katsumi T, Edil T B and Lin L 2000 Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext. Geomembranes 18(200): 133–161. https://doi.org/10.1016/S0266-1144(99)00024-2

    Article  Google Scholar 

  33. Liu L, Li Z, Liu X and Li Y 2018 Effect of salt content on freezing temperature and unconfined compression strength of lime-treated subgrade clay. Appl. Clay Sci. 158 65–71 https://www.sciencedirect.com/science/article/pii/S0169131718301285

  34. Shon C-S, Saylak D and Mishra S K 2010 Combined use of calcium chloride and fly ash in road base stabilization. Transp. Res. Rec. SAGE Publications Sage CA: Los Angeles, CA 2186(1): 120–129

  35. Muhammad N, Siddiqua S and Latifi N 2018 Solidification of Subgrade Materials Using Magnesium Alkalinization: A Sustainable Additive for Construction. J. Mater. Civ. Eng. American Society of Civil Engineers (ASCE) 30(10)

  36. Tonelli M, Martini F, Calucci L, Fratini E, Geppi M and Ridi F et al. 2016 Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements. Dalt. Trans. R. Soc. Chem. 45(8): 3294–3304

    Article  CAS  Google Scholar 

  37. Phetchuay C, Horpibulsuk S, Suksiripattanapong C, Chinkulkijniwat A, Arulrajah A and Disfani M M 2014 Calcium carbide residue: alkaline activator for clay-fly ash geopolymer. Constr. Build. Mater. 69: 285–294

    Article  CAS  Google Scholar 

  38. ASTM D 1999 Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). Unified Soil Classif. Syst. ASTM International, West Conshohocken, PA

  39. Verdolotti L, Iannace S, Lavorgna M and Lamanna R 2008 Geopolymerization reaction to consolidate incoherent pozzolanic soil. J. Mater. Sci. 43(3): 865–873

    Article  ADS  CAS  Google Scholar 

  40. Rios S, Cristelo N, Viana da Fonseca A and Ferreira C 2016 Structural performance of alkali-activated soil ash versus soil cement. J. Mater. Civ. Eng. 28(2)

  41. ASTM D 2008 Standard test method for unconfined compressive strength index of chemical-grouted soils. ASTM Int.

  42. Latifi N, Eisazadeh A, Marto A and Meehan C L 2017 Tropical residual soil stabilization: a powder form material for increasing soil strength. Constr. Build. Mater. 147: 827–836

    Article  CAS  Google Scholar 

  43. ASTM D 1994 698-91. Test Method Lab. Compact. Charact. Soils Using Stand. Effort, 600 kN m/m3, Annu. B. ASTM Stand. ASTM, Philadelphia, USA 4 69–76

  44. American Society for Testing and Materials (Filadelfia P 2016 ASTM D2166/D2166M-16: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM

  45. British Standards Institution 1990 BS 1377-5: 1990 Methods of test for soils for civil engineering purposes Part 5: Compressibility, permeability and durability tests. Methods Test Soils Civ. Eng. Purp. (1):

  46. Chew S H, Kamruzzaman A H M and Lee F H 2004 Physicochemical and engineering behavior of cement treated clays. J. Geotech. Geoenviron. Eng. 130(7): 696–706

    Article  CAS  Google Scholar 

  47. Catauro M, Bollino F, Dell’Era A and Vecchio Ciprioti S 2016 Pure Al2O3·2SiO2 synthesized via a sol-gel technique as a raw material to replace metakaolin: chemical and structural characterization and thermal behavior. Ceram. Int. 42(14): 16303–16309. https://doi.org/10.1016/j.ceramint.2016.07.179

    Article  CAS  Google Scholar 

  48. Turkoz M, Savas H, Acaz A and Tosun H 2015 The effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics. Appl. Clay Sci. 101 1–9 https://doi.org/10.1016/j.clay.2014.08.007

  49. Randolph R B 1997 Earth materials catalyst stabilization for road bases, road shoulders, unpaved roads, and transportation earthworks. Transp. Res. Rec. 1589 (1): 58–63. https://doi.org/10.3141/1589-10

  50. Xeidakis G S 1996 Stabilization of swelling clays by Mg(OH)2. Changes in clay properties after addition of Mg-hydroxide. Eng. Geol. 44 (1–4): 107–120

  51. Henrist C, Mathieu J P, Vogels C, Rulmont A and Cloots R 2003 Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J. Cryst. Growth 249(1–2): 321–330

    Article  ADS  CAS  Google Scholar 

  52. Tingle J S and Santoni R L 2003 Stabilization of clay soils with nontraditional additives. Transp. Res. Rec. II 1819: 72–84

    Article  Google Scholar 

  53. Rauch A F, Harmon J S, Katz L E and Liljestrand H M 2002 Measured effects of liquid soil stabilizers on engineering properties of clay. Transp. Res. Rec. 1787: 33–41

    Article  Google Scholar 

  54. Katz L E, Rauch A F, Liljestrand H M, Harmon J S, Shaw K S and Albers H 2001 Mechanisms of soil stabilization with liquid ionic stabilizer. Transp. Res. Rec. (1757):

  55. Komnitsas K and Zaharaki D 2007 Geopolymerisation: a review and prospects for the minerals industry. Miner. Eng. 20(14): 1261–1277

    Article  CAS  Google Scholar 

  56. A. Allahvedi H H 2015 Investigating the resistance of alkali-activated slag mortar exposed to magnesium sulfate attack. In. J. Civ. Eng. 13(4): 379–387 https://doi.org/10.22068/IJCE.13.4.379

  57. Miranda-Trevino J C and Coles C A 2003 Kaolinite properties, structure and influence of metal retention on pH. Appl. Clay Sci. 23(1–4): 133–139. https://doi.org/10.1016/S0169-1317(03)00095-4

    Article  CAS  Google Scholar 

  58. Chen R, Congress S S, Cai G, Zhou R, Xu J, Duan W and Liu S 2022 Evaluating the effect of active ions on the early performance of soft clay solidified by modified biomass waste-rice husk ash. Acta Geotech. 18(5): 1–18. https://doi.org/10.1007/s11440-022-01630-5

    Article  Google Scholar 

  59. Li Z, Zhang T, Hu J, Tang Y, Niu Y and Wei J et al. 2014 Characterization of reaction products and reaction process of MgO–SiO2–H2O system at room temperature. Constr. Build. Mater. 61: 252–259

    Article  Google Scholar 

  60. Shabanian M and Ouria A 2022 Effect of the steady-state pH of kaolinite pore fluid on its microstructure and geotechnical properties. Arab. J. Geosci. 15(17): 36–47. https://doi.org/10.1007/s12517-022-10689-z

    Article  CAS  Google Scholar 

  61. Danks A E, Hall S R and Schnepp Z 2016 The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater. Horizons. R. Soc. Chem. 3(2): 91–112

    Article  CAS  Google Scholar 

  62. Singh B, Ishwarya G, Gupta M and Bhattacharyya S K 2015 Geopolymer concrete: a review of some recent developments. Constr. Build. Mater. 85: 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036

    Article  Google Scholar 

  63. Khater H M 2010 Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution. Ceram. - Silikaty 54(4): 325–333

    CAS  Google Scholar 

  64. Favier A, Habert G, D’Espinose De Lacaillerie J B and Roussel N 2013 Mechanical properties and compositional heterogeneities of fresh geopolymer pastes. Cem. Concr. Res. 48: 9–16. https://doi.org/10.1016/j.cemconres.2013.02.001

    Article  CAS  Google Scholar 

  65. García-Lodeiro I, Cherfa N, Zibouche F, Fernández-Jimenez A and Palomo A 2014 The role of aluminium in alkali-activated bentonites. Mater. Struct. Constr. 48(3): 585–597

    Article  Google Scholar 

  66. Brew D R M and Glasser F P 2005 Synthesis and characterisation of magnesium silicate hydrate gels. Cem. Concr. Res. 35(February 2003): 85–98

  67. Lothenbach B, Nied D, L’Hôpital E, Achiedo G and Dauzères A 2015 Magnesium and calcium silicate hydrates. Cem. Concr. Res. 77: 60–68. https://doi.org/10.1016/j.cemconres.2015.06.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author expresses gratitude to the Ethiopian Ministry of Higher Education for the scholarship program and to my family (Cindi Jacobs and Woody Jacobs) for all the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayele Adane Ayila.

Ethics declarations

Conflict of interest

The authors have no competing interest to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayila, A.A., Ramana Murty, V. Experimental study on strength and microstructural properties of hydrous magnesium alkalization in colligation with tropical laterite soil at ambient temperature. Sādhanā 49, 67 (2024). https://doi.org/10.1007/s12046-024-02435-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-024-02435-w

Keywords

Navigation