Log in

Solving Cubic Equations Using Dynamic Geometry

  • General Article
  • Published:
Resonance Aims and scope Submit manuscript

Abstract

In a right-angled triangle ABC with right angle at point B, base BC, perpendicular AB, perpendiculars BD and EF upon AC, perpendicular DE upon BC, DN upon AB, and finally perpendicular NO upon AC are drawn. When length ON is adjusted by varying angle C, so as to equate it with the constant term of the transformed cubic equation, length BD is equal to the value of one of the real roots of the equation.

Other roots can be determined from the resulting quadratic equation.

Perpendiculars BD and EF upon AC, perpendicular DE upon BC when drawn in a right-angled triangle ABC with right angle at point B, base BC, perpendicular AB, and then these perpendiculars bear a common ratio cos C given by EF/DE = DE/BD = BD/AB = cos C, where C is an angle enclosed by sides CB and CA. These ratios are exploited to solve cubic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Suggested Reading

  1. Project Euclid, Chapter 19, Geometric Solutions of Quadratic and Cubic Equation. https://projecteuclid.org/ebook/download?urlId10.3792/euclid/9781429799850-23&isFullBook=false

  2. Alasdair McAndrew, Extending Euclidean constructions with dynamic geometry software, Proceedings of the 20th Asian Technology Conference in Mathematics, Leshan, China, 2015. https://atcm.mathandtech.org/EP2015/full/4.pdf

  3. Benjamin Bold, Famous Problems of Geometry and How to Solve Them, Dover Publications, New York, 1982 (orig. 1969).

    Google Scholar 

  4. Jesper Lützen, The algebra of geometric impossibility: Descartes and Montucla on the impossibility of the duplication of the cube and the trisection of the angle, Centaurus, Vol.52, No.1, pp.4–37, 2010. doi:https://doi.org/10.1111/j.1600-0498.2009.00160.x

    Article  Google Scholar 

  5. Pierre-Laurent Wantzel, Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas, J. de Math. et Appl. (PDF), Vol.1, No.2, pp.366–372, 1837, Retrieved 3 March 2014.

    Google Scholar 

  6. J J O’Connor and E F Robertson, Paper of Omar Khayyam, Scr. Math., Vol.26, pp.323–337, 1963.

    Google Scholar 

  7. J J O’Connor and E F Robertson, Omar Khayyam, MacTutor History of Mathematics Archive, University of St Andrew, Scotland, 1999.

    Google Scholar 

  8. Lucye Guilbeau, The history of the solution of the cubic equations, Math. News Lett., Vol.5, No.4, pp.8–12, 1930. doi:https://doi.org/10.2307/3027812, JSTOR 3027812

    Article  Google Scholar 

  9. Dan Kalman and Mark Verdi, Polynomial with closed Lill path, Math. Mag., Vol.88, No.1, pp.3–10, 2015.

    Article  Google Scholar 

  10. M E Lill, Resolution graphique des équationsnumériques de tousdegrés à Nuneseule inconnue, et description d’un instrument inventé dans ce but (PDF), Nouvelles Annales de Mathématiques, Vol.2, No.6, pp.359–362, 1867.

    Google Scholar 

  11. M Paola and T Valerio, Folding cubic roots: Margherita Piazzolla Beloch’s contribution to elementary geometric constructions. Proceedings Aplimat 2017, Slovak University of Technology in Bratislava, Slovakia. http://ricerca.matfis.uniroma3.it//users/valerio/FoldingCubicRoots.pdf

  12. G D C Stokes, Mechanical devices for solving quadratic and cubic equations, Edinb. Math. Notes, Vol.39, pp.10–12, 1954. doi: https://doi.org/10.1017/S0950184300003098

    Article  Google Scholar 

  13. James S Eaton, A Treatise on Arithmetic, Thomson Bigelow & Brown, 25 & 29, Cornhill, p.49, 1872.

    Google Scholar 

  14. Wikipedia, Cubic equation. https://en.m.wikipedia.org/wiki/Cubic_equation

  15. N K Wadhawan, Solution of quintic equation by geometric method and based upon it: a mathematical model, J. Interdiscip. Med. Math., Vol. 26, pp. 775–793, 2023. https://doi.org/10.47974/JTM-1538

    Google Scholar 

  16. D E Smith and M L Latham, Translation of The Geometry of Rene Descartes, Republished in 1954 by Dover Publications, Inc., New York of the original publication by Open Court Publishing Company, pp.44–47, 1925.

  17. R W D Nickalls, Viete, Descartes and the cubic equation, Math. Gazette, Vol.90, pp.203–208, 2006. doi:https://doi.org/10.1017/S0025557200179598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narinder Kumar Wadhawan.

Additional information

Narinder Kumar Wadhawan, although an engineering graduate, switched to civil service after a short stint with technical posts. To satisfy his passion for mathematics, he, after retirement from the Indian Administrative Service, writes research papers that have been published in reputed journals, some abstracted and indexed in WoS and Scopus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhawan, N.K. Solving Cubic Equations Using Dynamic Geometry. Reson 29, 919–934 (2024). https://doi.org/10.1007/s12045-024-0919-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12045-024-0919-2

Keywords

2010 MSC

Navigation