Log in

A classification of spherical Schubert varieties in the Grassmannian

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let L be any standard Levi subgroup which acts by left multiplication on a Schubert variety X(w) in the Grassmannian. We give a complete classification of the pairs L and X(w), where X(w) is a spherical variety for the action of L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borel A, Linear algebraic groups, volume 126 of Graduate Texts in Mathematics, second edition (1991) (New York: Springer-Verlag)

  2. Bravi P and Cupit-Foutou S, Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble) 60(2) (2010) 641–681

    Article  MathSciNet  MATH  Google Scholar 

  3. Bravi P and Pezzini G, Wonderful varieties of type \(d\), Represent. Theory 9 (2005) 578–637

  4. Bravi P and Pezzini G, Wonderful subgroups of reductive groups and spherical systems, J. Algebra 409 (2014) 101–147

    Article  MathSciNet  MATH  Google Scholar 

  5. Bravi P and Pezzini G, Primitive wonderful varieties, Math. Z. 282(3–4) (2016) 1067–1096

    Article  MathSciNet  MATH  Google Scholar 

  6. Bravi P, Wonderful varieties of type \(e\), Represent. Theory 11 (2007) 174–191

    Article  MathSciNet  MATH  Google Scholar 

  7. Brion M, On orbit closures of spherical subgroups in flag varieties, Comment. Math. Helv. 76(2) (2001) 263–299

    Article  MathSciNet  MATH  Google Scholar 

  8. Camus R, Variétés sphériques affines lisses, PhD thesis (2001) (Grenoble: Institut Fourier)

  9. Can M B, Hodges R and Lakshmibai V, Toroidal Schubert varieties, Algebras and Representation Theory August 2019

  10. Escobar L and Mészáros K, Toric matrix Schubert varieties and their polytopes, Proc. Amer. Math. Soc. 144(12) (2016) 5081–5096

    Article  MathSciNet  MATH  Google Scholar 

  11. Fulton W and Harris J, Representation theory, volume 129 of Graduate Texts in Mathematics (1991) (New York: Springer-Verlag) A first course, Readings in Mathematics

  12. Fulton W, Young tableaux, volume 35 of London Mathematical Society Student Texts (1997) (Cambridge: Cambridge University Press), Wwith Applications to Representation Theory and Geometry

  13. Gao Y, Hodges R and Yong A, Classification of Levi-spherical Schubert varieties, ar**v e-prints, page ar**v:2104.10101, April 2021

  14. Gutschwager C, On multiplicity-free skew characters and the Schubert calculus, Ann. Comb. 14(3) (2010) 339–353

    Article  MathSciNet  MATH  Google Scholar 

  15. Hodges R and Lakshmibai V, Levi subgroup actions on schubert varieties, induced decompositions of their coordinate rings, and sphericity consequences, Algebras and Representation Theory (2018) https://doi.org/10.1007/s10468-017-9744-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Knop F, The Luna–Vust theory of spherical embeddings, in Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) pp 225–249 (1991) (Madras: Manoj Prakashan)

  17. Lakshmibai V and Brown J, The Grassmannian variety, volume 42 of Developments in Mathematics (2015) (New York: Springer) Geometric and representation-theoretic aspects

  18. Losev V Ivan, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147(2) (2009) 315–343

  19. Luna D, Variétés sphériques de type \(A\), Publ. Math. Inst. Hautes Études Sci. (94) (2011) 161–226

    Article  MATH  Google Scholar 

  20. Luna D and Vust Th, Plongements d’espaces homogènes, Comment. Math. Helv. 58(2) (1983) 186–245

    Article  MathSciNet  MATH  Google Scholar 

  21. Matsuki T and Ōshima T, Embeddings of discrete series into principal series, in: The Orbit Method in Representation Theory (Copenhagen, 1988), volume 82 of Progr. Math., pp. 147–175 (1990) (Boston, MA: Birkhäuser Boston)

  22. Magyar P, Weyman J and Zelevinsky A, Multiple flag varieties of finite type, Adv. Math. 141(1) (1999) 97–118

    Article  MathSciNet  MATH  Google Scholar 

  23. Perrin N, On the geometry of spherical varieties, Transform. Groups 19(1) (2014) 171–223

    Article  MathSciNet  MATH  Google Scholar 

  24. Stanley R P, Enumerative Combinatorics, Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics (1999) (Cambridge: Cambridge University Press), With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin

  25. Thomas H and Yong A, Multiplicity-free Schubert calculus, Canad. Math. Bull. 53(1) (2010) 171–186

    Article  MathSciNet  MATH  Google Scholar 

  26. Wyser B J, Schubert calculus of Richardson varieties stable under spherical Levi subgroups, J. Algebraic Combin. 38(4) (2013) 829–850

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatramani Lakshmibai.

Additional information

Communicating Editor: V Balaji

This article is part of the “Special Issue in Memory of Professor C S Seshadri”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodges, R., Lakshmibai, V. A classification of spherical Schubert varieties in the Grassmannian. Proc Math Sci 132, 68 (2022). https://doi.org/10.1007/s12044-022-00713-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-022-00713-3

Keywords

Mathematics Subject Classification

Navigation