Log in

Stochastic resonance in strong Poisson white noise excited system and its application in multi-features identification

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The response of a nonlinear system excited by multi-frequency signals and Poisson white noise contains abundant dynamic behaviours. The study on system response has certain practical values. Utilising optimal dynamics response has unique advantages in weak feature identification under strong background noise. In this work, we study the optimal dynamics response in the bistable system excited by multi-frequency signals and Poisson white noise. The effects of noise parameters on system response and feature identification are discussed and analysed. Also, a signal identification method for unknown multi-frequency signals based on the optimal resonance response of the nonlinear system is proposed and applied to the compound fault diagnosis of rolling bearings, which utilises the difference between stochastic resonance and coherence resonance to determine characteristic components of the signals. The proposed method effectively identifies the characteristic components of the original excitation and avoids misjudgment caused by strong noise, which is effectively verified via simulation analysis and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y Zhai, Y Fu and Y Kang, IEEE Trans. Instrum. Meas. 72, 1 (2023)

    Google Scholar 

  2. Z Wang, J Yang, Y Guo, T Gong and Z Shan, J. Sound Vib. 537, 117210 (2022)

    Article  Google Scholar 

  3. Kim J, R L Harne and K W Wang, J. Sound Vib. 144, 031006 (2022)

    Google Scholar 

  4. Z Budrikis, Nat. Rev. Phys. 3, 771 (2021)

    Article  Google Scholar 

  5. T Wagner, P Talkner, J C Bayer, E P Rugeramigabo, P Hänggi and R J Haug, Nat. Phys. 15, 330 (2019)

    Article  Google Scholar 

  6. K J H Peters, Z Geng, K Malmir, J M Smith and S R K Rodriguez, Phys. Rev. Lett. 126, 213901 (2021)

    Article  ADS  PubMed  Google Scholar 

  7. J Shi, M Luo and C Huang, Pramana – J. Phys. 89, 1 (2017)

    Article  ADS  Google Scholar 

  8. N K Kamal and S Sinha, Pramana – J. Phys. 84, 249 (2015)

    Article  ADS  Google Scholar 

  9. P Hänggi, M E Inchiosa, D Fogliatti and A R Bulsara, Phys. Rev. E 62, 6155 (2000)

    Article  ADS  Google Scholar 

  10. F Duan, D Rousseau and F Chapeau-Blondeau, Phys. Rev. E 69, 011109 (2004)

    Article  ADS  Google Scholar 

  11. C Yang, J Yang, D Zhou, S Zhang and G Litak, Philos. Trans. R. Soc. A 379, 20200239 (2021)

    Article  ADS  Google Scholar 

  12. Z Xu, Z Wang, J Yang, M A Sanjuán, B Sun and S Huang, Eur. Phys. J. Plus 138, 1 (2023)

    Article  ADS  Google Scholar 

  13. A S Pikovsky and J Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  14. S Zhang, J Yang, J Zhang, H Liu and E Hu, Nonlinear Dyn. 98, 2035 (2019)

    Article  Google Scholar 

  15. T Gong, J Yang, M A F Sanjuán and H Liu, J. Comput. Nonlinear Dyn. 17, 071003 (2022)

    Article  Google Scholar 

  16. M O Cáceres, J. Math. Phys. 62, 063303 (2021)

    Article  ADS  Google Scholar 

  17. L Chen, Z Yuan, J Qian and J Q Sun, Appl. Math. Mech. 44, 207 (2023)

    Article  Google Scholar 

  18. A Pirrotta and R Santoro, Prob. Eng. Mech. 26, 26 (2011)

    Article  Google Scholar 

  19. A Lyubushin, Front. Earth Sci. 10, 905663 (2022)

    Article  ADS  Google Scholar 

  20. B Goller, H J Pradlwarter and G I Schuëller, J. Sound Vib. 332, 2488 (2013)

    Article  ADS  Google Scholar 

  21. H Zhang, Y Liu and Y Deng, J. Bridge Eng. 25, 04020057 (2020)

    Article  Google Scholar 

  22. C Klüppelberg and C Kühn, Stoch. Proc. Appl. 113, 333 (2004)

    Article  Google Scholar 

  23. A Pirrotta, Prob. Eng. Mech. 22, 127 (2007)

    Article  Google Scholar 

  24. W Ye, L Chen and J Q Sun, J. Sound Vib. 566, 117923 (2023)

    Article  Google Scholar 

  25. F Moss, L M Ward and W G Sannita, Clin. Neurophysiol. 115, 267 (2004)

    Article  PubMed  Google Scholar 

  26. K J Arun, P Shital and M Gaurav, Int. J. Performability Eng. 16, 499 (2020)

    Article  Google Scholar 

  27. W Deng, Z Li, X Li, H Chen and H Zhao, IEEE Trans. Instrum. Meas. 71, 1 (2022)

    Google Scholar 

  28. D Han, S An and P Shi, Mech. Syst. Signal Process. 70, 995 (2016)

    Article  ADS  Google Scholar 

  29. P Shi, X Ding and D Han, Measurement 47, 540 (2014)

    Article  ADS  Google Scholar 

  30. J Liu, Y Leng, Z Lai and S Fan, Sensors 18, 1325 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Y Wu and W Q Zhu, Phys. Lett. A 372, 623 (2008)

    Article  ADS  Google Scholar 

  32. Q Ma, S Cao, T Gong and J Yang, J. Mech. Sci. Technol. 36, 5341 (2022)

    Article  Google Scholar 

  33. X Zhang, Q Miao, Z Liu and Z He, ISA Trans. 71, 206 (2017)

    Article  PubMed  Google Scholar 

  34. I Tiwari, J M Cruz, P Parmananda and M Rivera, Phys. Rev. E 100, 060202 (2019)

    Article  ADS  PubMed  Google Scholar 

  35. B Xu, F Duan, R Bao and J Li, Chaos Solitons Fractals 13, 633 (2002)

    Article  ADS  Google Scholar 

  36. Y F Xu, J Gao, G C Chen and J S Yu, Appl. Mech. Mater. 63, 106 (2011)

    Article  ADS  Google Scholar 

  37. T Wang, M Liang, J Li and W Cheng, Mech. Syst. Signal Process. 45, 139 (2014)

    Article  ADS  Google Scholar 

  38. T Gong, J Yang, S Liu and H Liu, Nonlinear Dyn. 108, 3839 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the major special basic research projects of aeroengine and gas turbine (Grant No. 2017-IV-0008-0045), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqian Cao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Cao, S., Gong, T. et al. Stochastic resonance in strong Poisson white noise excited system and its application in multi-features identification. Pramana - J Phys 98, 41 (2024). https://doi.org/10.1007/s12043-024-02733-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02733-2

Keywords

PACS Nos

Navigation