Log in

Hybrid techniques for approximate analytical solution of space- and time-fractional telegraph equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This article intends to study the space-fractional and time-fractional telegraph equations using three hybrid methods, viz. Elzaki homotopy perturbation method, Sumudu homotopy perturbation method and Aboodh homotopy perturbation method. The nonlinear terms can be handled by using homotopy perturbation method. The homotopy perturbation method is applied to the reformulated first- and second-order initial value problem which leads the solution in terms of transformed variables, and the series solution is obtained by using the inverse transformation. These three methods give approximate analytical solution in the form of power series and converges to exact solution. This shows the efficiency of the mentioned methods. By these methods, we can get the accuracy of the approximate solutions only after a few terms. For the accuracy of the obtained solutions, the absolute error has been illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S Dubey and S Chakraverty, Math. Comput. Simul. 198, 509 (2022)

    Article  Google Scholar 

  2. M Cui, J. Comput. Phys. 228(20), 7792 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Y Hu, Y Luo and Z Lu, J. Comput. Appl. Math. 215(1), 220(2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. S Momani and Z Odibat, Appl. Math. Comput. 177(2), 488 (2006)

    MathSciNet  Google Scholar 

  5. K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (Wiley, 1993)

  6. I Podlubny, The Laplace transform method for linear differential equations of the fractional order, ar**v preprint funct-an/9710005 (1997)

  7. R M Jena and S Chakraverty, SN Appl. Sci. 1(3), 1 (2019)

    Article  Google Scholar 

  8. R M Jena, S Chakraverty, S O Edeki and O M Ofuyatan, J. Theor. Appl. Inform. Technol. 98(4), 535 (2020)

    Google Scholar 

  9. L Cveticanin, Chaos Solitons Fractals 30(5), 1221 (2006)

    Article  ADS  Google Scholar 

  10. N A Khan, A Ara, S A Ali and A Mahmood, Int. J. Nonlinear Sci. Numer. Simulat. 10(9), 1127 (2009)

    Google Scholar 

  11. S Dubey and S Chakraverty, Homotopy perturbation method for solving fuzzy fractional heat-conduction equation, in: Advances in fuzzy integral and differential equations (Springer, Cham. 2022) pp. 159–169

  12. S Dubey and S Chakraverty, Solution of fractional wave equation by homotopy perturbation method, in: Wave dynamics (World Scientific, 2022) pp. 263–277

  13. S Momani and A Yıldırım, Int. J. Comput. Math. 87(5), 1057 (2010)

    Article  MathSciNet  Google Scholar 

  14. S Momani, Appl. Math. Comput. 170(2), 1126 (2005)

    MathSciNet  Google Scholar 

  15. J Chen, F Liu and V Anh, J. Math. Anal. Appl. 338(2), 1364 (2008)

    Article  MathSciNet  Google Scholar 

  16. A Sevimlican, Math. Probl. Eng. 2010, 2906312010 (2010)

    Article  MathSciNet  Google Scholar 

  17. A Yıldırım, Int. J. Comput. Math. 87(13), 2998 (2010)

    Article  MathSciNet  Google Scholar 

  18. J Biazar and M Eslami, Phys. Lett. A 374(29), 2904 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. D Kumar, J Singh and S Kumar, Walailak J. Sci. Technol. 11(8), 711 (2014)

    Google Scholar 

  20. I Podlubny, Math. Sci. Eng. 198, 340 (1999)

    Google Scholar 

  21. X Zhang, J Zhao, J Liu and B Tang, Appl. Math. Model. 38(23), 5545 (2014)

    Article  MathSciNet  Google Scholar 

  22. T M Elzaki, Global J. Pure Appl. Sci. 8(2), 167 (2012)

    MathSciNet  Google Scholar 

  23. K Aboodh, Theor. Approx. Appl. 11(1), 1 (2016)

    Google Scholar 

  24. M H Cherif and D Ziane, Universal J. Math. Appl. 1(4), 244 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Chakraverty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, S., Chakraverty, S. Hybrid techniques for approximate analytical solution of space- and time-fractional telegraph equations. Pramana - J Phys 97, 11 (2023). https://doi.org/10.1007/s12043-022-02482-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02482-0

Keywords

PACS Nos

Navigation