Log in

Noise-formed triple-well potential and stochastic resonance of charge carriers

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We study the thermal dynamics of charge carriers jum** across potential traps in a one-dimensional semiconductor layer. The potential traps are denser at the middle layer and decay exponentially when moving away from it. Such a distribution drives the diffusion of the charge carriers toward the centre. Then, the application of a non-uniform temperature, hotter around the centre, gives a chance for some of the charge carriers to spread out. Exposing the system to an external bistable potential, more intense at the two ends of the semiconductor layer, forces the outward-moving charge carriers to condense around two localised positions. As a result, charge carriers are dense in the central region and in two symmetrically positioned regions away from the centre. Using numerical simulation, in the framework of three-state approximation, we investigate the mobility of charge carriers as a function of different controlling parameters. In the presence of two time-varying signals, we calculate explicitly the transition rates from the middle layer towards the edges of the semiconductor layer and vice versa. We also study the stochastic resonance by monitoring the asymmetric mean position of the charge carrier distribution, that is triggered by the synchronisation of signals with the noise-driven transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M B Prince, Phys. Rev. 93, 1204 (1954)

  2. B Abeles, Phys. Rev. 131, 1906 (1963)

  3. M Borromeo and F Marchesoni, Phys. Rev. E 81, 012102 (2010)

    Article  ADS  Google Scholar 

  4. S Fauve and F Heslot, Phys. Lett. A 97, 5 (1983)

    Article  ADS  Google Scholar 

  5. A R Bulsara, M E Inchiosa and L Gammaitoni, Phys. Rev. Lett. 77, 2162 (1996)

    Article  ADS  Google Scholar 

  6. A Nitkin, N G Stocks and A R Bulsara, Phys. Rev. E 68, 036133 (2003)

    Article  ADS  Google Scholar 

  7. B McNamara, K Wiesenfeld and R Roy, Phys. Rev. Lett. 60, 2626 (1988)

    Article  ADS  Google Scholar 

  8. F Marchesoni, A Apostolico and S Satucci, Phys. Rev. E 59, 3958 (1999)

    Article  ADS  Google Scholar 

  9. P K Ghosh, B C Bang and D S Ray, J. Chem. Phys. 127, 044510 (2004)

    Article  ADS  Google Scholar 

  10. F Bouthanoute, L El Arroum, Y Boughaleb and M Mazroui, Moroc. J. Phys.-Condens. Matter 9, 17 (2007)

  11. N G van Kampen, J. Phys. Chem. Solids 49, 673(1988)

    Article  ADS  Google Scholar 

  12. B Aragie, Yergou B Tateka and M Bekele, Eur. Phys. J. B 87, 101 (2014)

    Article  ADS  Google Scholar 

  13. B Aragie, M Asfaw, L Demeyu and M Bekele, EPJB 87, 214 (2014)

    Article  ADS  Google Scholar 

  14. B Aragie, J. Comput. Theor. Trans. 48(1), 36 (2019)

    Article  Google Scholar 

  15. B Aragie, J. Comput. Theor. Trans. 49(2), 88 (2020)

    Article  MathSciNet  Google Scholar 

  16. B Aragie, Int. J. Mod. Phys. B 28, 1550011 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. M Asfaw, B Aragie and M Bekele, Eur. Phys. J. B 79, 371 (2011)

    Article  ADS  Google Scholar 

  18. V Narayan and M Willander, Phys. Rev. B 65, 125330 (2002)

    Article  ADS  Google Scholar 

  19. V Narayan and M Willander, Phys. Rev. B 65, 075308 (2002)

    Article  ADS  Google Scholar 

  20. E T Owen and C H W Barnes, Phys. Rev. Appl. 6, 054007 (2016)

    Article  ADS  Google Scholar 

  21. S Kumar, K J Thomas, L W Smith, M Pepper, G L Creeth, I Farrer, D Ritchie, G Jones and J Griffiths, Phys. Rev. B 90, 201304(R) (2014)

    Article  ADS  Google Scholar 

  22. D A Neamen, Semicondutor physics and devices: Basic principles (McGraw-Hill, New York, 2003)

    Google Scholar 

  23. J Zhang, W Cui, M Juda, D McCammon, R L Kelley, S H Moseley, C K Stahle and A E Szymkowiak, Phys. Rev. B 48, 2312 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

GP acknowledges the South African Centre for High Performance Computing (CHPC) and Dr A Lopis for assistance and granting access to computational resources under the allocation MATS0887.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pellicane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aragie, B., Bekele, M. & Pellicane, G. Noise-formed triple-well potential and stochastic resonance of charge carriers. Pramana - J Phys 96, 59 (2022). https://doi.org/10.1007/s12043-021-02273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02273-z

Keywords

PACS

Navigation