Log in

Neuro-fuzzy model of homocysteine metabolism

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

In view of well-documented association of hyperhomocysteinaemia with a wide spectrum of diseases and higher incidence of vitamin deficiencies in Indians, we proposed a mathematical model to forecast the role of demographic and genetic variables in influencing homocysteine metabolism and investigated the influence of life style modulations in controlling homocysteine levels. Total plasma homocysteine levels were measured in fasting samples using reverse phase HPLC. Multiple linear regression (MLR) and neuro-fuzzy models were developed. The MLR model explained 64% variability in homocysteine, while the neuro-fuzzy model showed higher accuracy in predicting homocysteine with a mean absolute error of 0.00002 \(\mu \hbox {mol}/\hbox {L}\). Methylene tetrahydrofolate reductase (MTHFR) C677T, 5-methyltetrahydrofolate homocysteine methyltransferase (MTR) A2756G and 5-methyltetrahydrofolate homocysteine methyltransferase reductase (MTRR) A66G were shown to be positively associatiated with homocysteine, while nonvegetarian diet, serine hydroxymethyltransferase 1 (SHMT1) C1420T and TYMS \(5^\prime \)-UTR 28 bp tandem repeat exhibited negative association with homocysteine. The protective role of SHMT1 C1420T was attributed to more H-bonding interactions in the mutant modelled compared to the wild type, as shown through in silico analysis. To conclude, polymorphisms in genes regulating remethylation of homocysteine strongly influence homocysteine levels. The restoration of one-carbon homeostasis by SHMT1 C1420T or increased flux of folate towards remethylation due to TYMS \(5^\prime \)-UTR 28 bp tandem repeat or nonvegetarian diet can lower homocysteine levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antoniades C., Shirodaria C., Warrick N., Cai S., de Bono J., Lee J. et al. 2006 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation 114, 1193–1201.

    Article  CAS  PubMed  Google Scholar 

  • Binia A., Contreras A. V., Canizales-Quinteros S., Alonzo V. A., Tejero M. E. and Silva-Zolezzi I. 2014 Geographical and ethnic distribution of single nucleotide polymorphisms within genes of the folate/homocysteine pathway metabolism. Genes Nutr. 9, 421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coppola A., Davi G., De Stefano V., Mancini F. P., Cerbone A. M. and Di Minno G. 2000 Homocysteine, coagulation, platelet function, and thrombosis. Semin. Thromb. Hemost. 26, 243–254.

    Article  CAS  PubMed  Google Scholar 

  • Fu T. F., Hunt S., Schirch V., Safo M. K. and Chen B. H. 2005 Properties of human and rabbit cytosolic serine hydroxymethyltransferase are changed by single nucleotide polymorphic mutations. Arch. Biochem. Biophys. 442, 92–101.

    Article  CAS  PubMed  Google Scholar 

  • Ghaznavi H., Soheili Z., Samiei S. and Soltanpour M. S. 2015 Association of methylenetetrahydrofolate reductase C677T polymorphism with hyperhomocysteinemia and deep vein thrombosis in the Iranian population. Vasc. Specialist Int. 31, 109–114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindaiah V., Naushad S. M., Prabhakara K., Krishna P. C. and Radha Rama Devi A. 2009 Association of parental hyperhomocysteinemia and C677T methylene tetrahydrofolate reductase (MTHFR) polymorphism with recurrent pregnancy loss. Clin. Biochem. 42, 380–386.

    Article  CAS  PubMed  Google Scholar 

  • Kajanachumpol S., Atamasirikul K. and Tantibhedhyangkul P. 2013 C677T methylene tetrahydrofolate reductase and plasma homocysteine levels among Thai vegans and omnivores. Int. J. Vitam. Nutr. Res. 83, 86–91.

    Article  CAS  PubMed  Google Scholar 

  • Kirbas S., Kirbas A., Tufekci A., Cumhur Cure M., Cakmak S., Yazici T. et al. 2016 Serum levels of homocysteine, asymmetric dimethylarginine and nitric oxide in patients with Parkinson’s disease. Acta Clin. Belg. 71, 71–75.

    Article  PubMed  Google Scholar 

  • Kumudini N., Uma A., Naushad S. M., Mridula R., Borgohain R. and Kutala V. K. 2014 Association of seven functional polymorphisms of one-carbon metabolic pathway with total plasma homocysteine levels and susceptibility to Parkinson’s disease among South Indians. Neurosci. Lett. 568, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi S. V., Naushad S. M., Reddy C. A., Saumya K., Rao D. S., Kotamraju S. et al. 2013 Oxidative stress in coronary artery disease: epigenetic perspective. Mol. Cell. Biochem. 374, 203–211.

    Article  CAS  PubMed  Google Scholar 

  • Landini L. 2014 Modification of lifestyle factors are needed to improve the metabolic health of patients with cardiovascular disease risk. Curr. Pharm. Des. 20, 6078–6088.

    Article  CAS  PubMed  Google Scholar 

  • Mohammad N. S., Yedluri R., Addepalli P., Gottumukkala S. R., Digumarti R. R. and Kutala V. K. 2011 Aberrations in one-carbon metabolism induce oxidative DNA damage in sporadic breast cancer. Mol. Cell. Biochem. 349, 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A. A., Hewedi D. H., Eissa A. M., Frydecka D. and Misiak B. 2014 Homocysteine levels in schizophrenia and affective disorders-focus on cognition. Front. Behav. Neurosci. 8, 343.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naushad S., Jamal N. J., Angalena R., Prasad C. K. and Devi A. R. 2007 Hyperhomocysteinemia and the compound heterozygous state for methylene tetrahydrofolate reductase are independent risk factors for deep vein thrombosis among South Indians. Blood Coagul. Fibrinolysis 18, 113–117.

    Article  CAS  PubMed  Google Scholar 

  • Naushad S. M., Pavani A., Digumarti R. R., Gottumukkala S. R. and Kutala V. K. 2011 Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer. Mol. Biol. Rep. 38, 4893–4901.

    Article  CAS  PubMed  Google Scholar 

  • Naushad S. M., Reddy C. A., Kumaraswami K., Divyya S., Kotamraju S., Gottumukkala S. R. et al. 2014a Impact of hyperhomocysteinemia on breast cancer initiation and progression: epigenetic perspective. Cell Biochem. Biophys. 68, 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Naushad S. M., Krishnaprasad C. and Devi A. R. 2014b Adaptive developmental plasticity in methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism limits its frequency in South Indians. Mol. Biol. Rep. 41, 3045–3050.

    Article  CAS  PubMed  Google Scholar 

  • Pushpakumar S., Kundu S. and Sen U. 2014 Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr. Med. Chem. 21, 3662–3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed M. C., Nijhout H. F., Sparks R. and Ulrich C. M. 2004 A mathematical model of the methionine cycle. J. Theor. Biol. 226, 33–43.

    Article  CAS  PubMed  Google Scholar 

  • Reed M. C., Nijhout H. F., Neuhouser M. L., Gregory J. F. 3rd., Shane B., James S. J. et al. 2006 A mathematical model gives insights into nutritional and genetic aspects of folate-mediated one-carbon metabolism. J. Nutr. 136, 2653–2661.

  • Refsum H., Yajnik C. S., Gadkari M., Schneede J., Vollset S. E., Orning L. et al. 2001 Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. Am. J. Clin. Nutr. 74, 233–241.

    CAS  PubMed  Google Scholar 

  • Sukla K. K., Tiwari P. K., Kumar A. and Raman R. 2013 Low birthweight (LBW) and neonatal hyperbilirubinemia (NNH) in an Indian cohort: association of homocysteine, its metabolic pathway genes and micronutrients as risk factors. PLoS One 8, e71587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubbink J. B., Vermaak W. J. H. and Bissbort S. 1991 Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J. Chromatogr. 565, 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Ulrich C. M., Neuhouser M., Liu A. Y., Boynton A., Gregory J. F. 3rd., Shane B. et al. 2008 Mathematical modeling of folate metabolism: predicted effects of genetic polymorphisms on mechanisms and biomarkers relevant to carcinogenesis. Cancer Epidemiol. Biomarkers Prev. 17, 1822–1831.

  • Vijaya Lakshmi S. V., Naushad S. M., Rupasree Y., Rao D. S. and Kutala V. K. 2011 Interactions of 5\(^{\prime } \)-UTR thymidylate synthase polymorphism with 677C \(\rightarrow \) T methylene tetrahydrofolate reductase and 66A \(\rightarrow \) G methyltetrahydrofolate homocysteine methyl-transferase reductase polymorphisms determine susceptibility to coronary artery disease. J. Atheroscler. Thromb. 18, 56–64.

    Article  PubMed  Google Scholar 

  • Wolthers K. R. and Scrutton N. S. 2009 Cobalamin uptake and reactivation occurs through specific protein interactions in the methionine synthase-methionine synthase reductase complex. FEBS J. 276, 1942–1951.

    Article  CAS  PubMed  Google Scholar 

  • Yamada K., Gravel R. A., Toraya T. and Matthews R. G. 2006 Human methionine synthase reductase is a molecular chaperone for human methionine synthase. Proc. Natl. Acad. Sci. USA 103, 9476–9481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F., Slungaard A., Vercellotti G. M. and Iadecola C. 1998 Superoxide-dependent cerebrovascular effects of homocysteine. Am. J. Physiol. 274, 1704–1711.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik Mohammad Naushad.

Additional information

Corresponding editor: Alok Bhattacharya

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (tif 404 KB)

Supplementary material 2 (tif 327 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naushad, S.M., Radha Rama Devi, A., Nivetha, S. et al. Neuro-fuzzy model of homocysteine metabolism. J Genet 96, 919–926 (2017). https://doi.org/10.1007/s12041-017-0856-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-017-0856-x

Keywords

Navigation