Log in

Pb isotope geochemistry of the late Miocene–Pliocene volcanic rocks from Todeshk, the central part of the Urumieh–Dokhtar magmatic arc, Iran: Evidence of an enriched mantle source

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The late Miocene–Pliocene volcanic rocks from Todeshk, south-east of Isfahan, are located in the middle of the Urumieh–Dokhtar magmatic belt. The belt is considered the subduction-related magmatic arc. The late Miocene–Pliocene calc-alkaline volcanic rocks are mainly andesite and dacite. The rocks have been formed during the post-collisional stage of the Zagros orogen. Geochemical data show the enrichment of light rare-earth elements and large ion lithophile elements such as Cs, Rb, K, Pb, Ba and Th as well as the depletion of elements with high field strength such as Nb, Ta and Ti. The Pb–Sr–Nd isotopic ratios of the studied rocks are characterised by \({}^{206}\hbox {Pb}/{}^{204}\hbox {Pb} =18.41\)–18.72; \({}^{207}\hbox {Pb}/{}^{204}\hbox {Pb} =15.64\)–15.67; \({}^{208}\hbox {Pb}/{}^{204}\hbox {Pb} = 38.49\)–38.83; \({}^{207}\hbox {Pb}/{}^{206}\hbox {Pb} = 0.8372\)–0.8496; \({}^{208}\hbox {Pb}/{}^{206}\hbox {Pb} = 2.0743\)–2.0905; \({}^{87}\hbox {Sr}/{}^{86}\hbox {Sr} = 0.7051\)–0.7068 and \({}^{143}\hbox {Nd}{/}{}^{144}\hbox {Nd} = 0.5125\). The rocks have \({\Delta }7/4\hbox {Pb} = 15.44\)–15.82 and \({\Delta }8/4\hbox {Pb} = 57.26\)–60.44. Based on petrological studies and the whole rock Pb, Sr and Nd isotopes data, the late Miocene–Pliocene calc-alkaline volcanic rocks have been generated from the partial melting of the subduction-related metasomatised mantle. Additionally, the slab-derived melts and fluids were recycled into the mantle source. The data demonstrate that terrigenous sediments accompanied by a subducted slab play an important role in the formation of the enriched mantle as the source of volcanic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alavi M 1980 Tectonostratigraphic evolution of Zagrosides of Iran; Geology 8 144–149.

    Article  Google Scholar 

  • Alavi M 1994 Tectonics of Zagros orogenic belt of Iran, new data and interpretation; Tectonophys. 229 211–238.

    Article  Google Scholar 

  • Alavi M 2004 Regional stratigraphy of the Zagros Fold-Thrust belt of Iran and its proforeland evolution; Am. J. Sci. 304 1–20.

    Article  Google Scholar 

  • Arslan M, Temizel I, Abdioglu E, Kolayli H, Yucel C, Boztug D and Sen C 2013 \(^{40}\text{ Ar }\)\(^{39}\text{ Ar }\) dating, whole-rock and Sr–Nd–Pb isotope geochemistry of post-collisional eocene volcanic rocks in the southern part of the eastern pontides (NE Turkey): Implications for magma evolution in extension-induced origin; Contrib. Mineral. Petrol. 166 113–142.

    Article  Google Scholar 

  • Azizi H, Tsuboi Y M, Takemura K and Razyani S 2014 The role of heterogenetic mantle in the genesis of Adakites Northeast of Sanandaj, Northwestern Iran; Chemie der Erde 74 87–97.

    Article  Google Scholar 

  • Berberian F and Berberian M 1981 Tectono-plutonic episodes in Iran; In: Zagros, Hindukosh, Himalaya, geodynamic evolution (eds) Gupta H K and Delany F M, American Geophysical Union, Washington DC, pp. 5–32.

    Chapter  Google Scholar 

  • Cox K G, Bell J D and Pankhurst R J 1979 The interpretation of igneous rocks; Unwin Hyman, London, 450p.

    Book  Google Scholar 

  • Davoudian A R, Genser J, Neubauer F and Shabanian N 2016 \(^{40}\text{ Ar }/^{39}\text{ Ar }\) mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: Implications for the tectonic evolution of Zagros orogeny; Gondwana Res. 37 216–240.

  • Faure G 1986 Principles of isotope geology (2nd edn); Wiley, New York.

    Google Scholar 

  • Gao Y, Hou Z, Kamber B S, Wei R, Meng X and Zhao R 2007 Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism; Contrib. Mineral. Petrol. 153 105–120.

    Article  Google Scholar 

  • Ge S, Zhai M, Safonova I, Li D, Zhu M, Zuo P and Shan H 2015 Whole-rock geochemistry and Sr–Nd–Pb isotope systematics of the late carboniferous volcanic rocks of the awulale metallogenic belt in the western Tianshan Mountains (NW China): Petrogenesis and geodynamical; Lithos 229 62–77.

    Article  Google Scholar 

  • Ghasemi A and Talbot C J 2005 A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran); J. Asian Earth Sci. 26 683–693.

    Article  Google Scholar 

  • Ghorbani M, Graham I T and Ghaderi M 2014 Oligocene–miocene geodynamic evolution of the central part of Urumieh–Dokhtar Arc of Iran; Int. Geol. Rev. 56(8) 1039–1050.

    Article  Google Scholar 

  • Hart S R 1984 A large-scale isotope anomaly in the southern hemisphere mantle; Nature 309 753–757.

    Article  Google Scholar 

  • Hassanzadeh J 1993 Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahre Babak area, Kerman Province). PhD thesis, University of California, Los Angeles, 204p.

  • Hofman A W 1997 Mantle geochemistry: The message from oceanic volcanism; Nature 385 219–229.

    Article  Google Scholar 

  • Khodami M 2011 Isotopic studies on volcanic rocks of Joushaghan–Kamu (Isfahan Province); The Report of Research Project, Islamic Azad University, Mahallat Branch (in Persian).

  • Khodami M and Davoudian A R 2008 Sr–Nd isotopic characteristics of neogene volcanic rocks in Southeast of Isfahan; In: 6th Swiss Geoscience Meeting, Lugano, pp. 88–89.

  • Khodami M, Noghreyan M and Davoudian A R 2009 Pliocene–Quaternary Adakite volcanism in the Isfahan area, Central Iranian magmatic belt; N. Jb. Miner. Abh. 186(3) 235–248.

    Google Scholar 

  • Khodami M, Noghreyan M and Davoudian A R 2010 Geochemical constraints on the genesis of the volcanic rocks in the Southeast of Isfahan Area, Iran; Arab. J. Geosci. 3 257–266.

    Article  Google Scholar 

  • Lustrino M and Anderson D L 2015 The mantle isotopic printer: Basic mantle plume geochemistry for seismologists and geodynamicists; In: The interdisciplinary earth, chapter 16 (eds) Foulger G R, Lustrino M and King S D, The Geological Society of America, Special Paper 514 and Am. Geophys. Union Spec. Publ. 71 257–279.

  • Mohajjel M, Fergusson C L and Sahandi M R 2003 Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran; J. Asian Earth Sci. 21 397–412.

    Article  Google Scholar 

  • Mukasa S B, Flower M F J and Miklius A 1994 The Nd–Sr and Pb-isotopic character of lavas from taal, Laguna De Bay and arayat volcanoes, southwestern luzon, Philippines: Implications for Arc magma petrogenesis; Tectonophys. 235 205–221.

    Article  Google Scholar 

  • Nabavi M and Amidi M 1978 Geological map of Nain 1:250000, Geological Survey of Iran.

  • Nakamura N 1974 Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites; Geochim. Cosmochim. Acta 38 757–775.

    Article  Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G and Jolivet L 2008 Arc-magmatism and subduction history beneath the Zagros mountains, Iran: A new report of adakites and geodynamic consequences; Lithos 106 380–398.

    Article  Google Scholar 

  • Pearce J A 1983 Role of the sub-continental lithosphere in magma genesis at active continental margins; In: Continental basalts and mantle xenoliths (eds) Hawkesworth C J, Norry M J and Shiva, Cheshire, UK, pp. 230–249.

    Google Scholar 

  • Pearce J A 2008 Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust; Lithos 100 14–48.

    Article  Google Scholar 

  • Plank T and Langmuir C H 1998 The chemical composition of subducting sediment and its consequences for the crust and mantle; Chem. Geol. 145 325–394.

    Article  Google Scholar 

  • Qian X, Wang Y, Feng Q, Zi J, Zhang Y and Chonglakmani Ch 2016 Petrogenesis and tectonic implication of the late triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand; Lithos 248 418–431.

    Article  Google Scholar 

  • Rudnick R L and Fountain D M 1995 Nature and composition of the continental crust-a lower crustal perspective; Rev. Geophys. 33 267–309.

    Article  Google Scholar 

  • Stöcklin J 1968 Structural history and tectonics of Iran: A review; Am. Assoc. Petrol. Geol. Bull. 52 1229–1258.

    Google Scholar 

  • Sun S and Mcdonough W F 1989 Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes; In: Magmatism in the ocean basins (eds) Saunders A D and Norry M J, Geol. Soc. London, pp. 313–345.

  • Tatsumi Y and Takahashi T 2006 Operation of subduction factory and production of andesite; J. Miner. Petrol. Sci. 101 145–153.

    Article  Google Scholar 

  • Wang P J, Chen F, Chen S M, Siebel W and Satir M 2006 Geochemical and Nd–Sr–Pb isotopic composition of mesozoic volcanic rocks in the songliao basin. NE China; Geochem. J. 40 149–159.

    Article  Google Scholar 

  • White W M 2003 Geochemistry; Cambridge University Press, London, 339p.

    Google Scholar 

  • Wilson M 1989 Igneous petrogenesis. A global tectonic approach; Unwin Hyman, London, 466p.

    Book  Google Scholar 

  • Workman R K, Hart S R, Jackson M, Regelous M, Farley K A, Blusztajn J, Kurz M and Staudigel H 2004 Recycled metasomatized lithosphere as the origin of the enriched mantle II (EMII) End-member: Evidence from the samoan volcanic chain; Geochem. Geophys. Geosyst. 5 1–44.

    Article  Google Scholar 

  • Yamgouot F N, Déruelle B, Gbambié I B, Ngounouno M I and Demaiffe D 2016 Geochemistry of the volcanic rocks from bioko island (Cameroon Hot line): Evidence for plume-lithosphere interaction; Geosci. Frontiers 7 743–757.

    Article  Google Scholar 

  • Zartman R E and Doe B R 1981 Plumbotectonics – the model; Tectonophys. 75 135–162.

    Article  Google Scholar 

  • Zhang Z, **ao X, Wang J, Wang Y and Kusky T M 2007 Post-collisional plio–pleistocene shoshonitic volcanism in the western Kunlun mountains, NW China, geochemical constraints on mantle source characteristics and petrogenesis; J. Asian Earth Sci. 31(4) 379–403.

    Google Scholar 

  • Zindler A and Hart S R 1986 Chemical geodynamics; Annu. Rev. Earth Pl. Sci. 14 493–571.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Yazd University for the support and Dr Nahid Shabanian and the anonymous reviewers for the constructive comments which greatly contributed to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Khodami.

Additional information

Corresponding Editor: Rajneesh Bhutani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodami, M. Pb isotope geochemistry of the late Miocene–Pliocene volcanic rocks from Todeshk, the central part of the Urumieh–Dokhtar magmatic arc, Iran: Evidence of an enriched mantle source. J Earth Syst Sci 128, 167 (2019). https://doi.org/10.1007/s12040-019-1185-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1185-7

Keywords

Navigation