Log in

Low energy electron interaction with citric acid: a local complex potential based time-dependent wavepacket study

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The resonant low-energy electron (LEE) induced scattering off biomolecules is proposed to undergo dissociative electron attachment (DEA) as one of the favoured pathways. In the current work, we have considered the citric acid molecule due to its biological relevance in the Krebs cycle, in which LEEs may affect and lead to metabolic dysfunction. To investigate the DEA pathway of citric acid, we implemented the local complex potential-based time-dependent wavepacket (LCP-TDWP) approach. From our calculation, we observed that the vertical attachment energy (VAE) of the citric acid system is found to be −1.17 eV, and the electron attaches itself to the 2-carboxylic acid group to form a transient negative ion (TNI) which further dissociates into a free radical and a radical anion. The lifetime for the TNI is around 1000 fs, with a maximum cross-section seen at 1.09 eV.

Graphical abstract

The interaction of low-energy electrons with citric acid can lead to dissociative electron attachment (DEA). In the current work, we used the local complex potential-based time-dependent wave packet (LCP-TDWP) approach to investigate DEA to citric acid. The time evolution of the probability density suggests the possibility of a boomerang model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lindsay A, Chamberlain C M, Witthuhn B A, Lowe D A and Ervasti J M 2019 Dystrophinopathy-associated dysfunction of Krebs cycle metabolism Hum. Mol. Genet. 28 942

    Article  CAS  PubMed  Google Scholar 

  2. Wiskich J T 1980 Control of the Krebs cycle In Metabolism and Respiration (Academic Press) p. 243

  3. von Sonntag C 1987 The chemical basis of radiation biology (Taylor & Francis: London) p. 22

    Google Scholar 

  4. Smith K 2013 Aging, carcinogenesis, and radiation biology: The role of nucleic acid addition reactions (Springer Science & Business Media)

    Google Scholar 

  5. Fuciarelli AF and Zimbrick JD 1995 Radiation Damage in DNA: Structure/Function Relationships at Early Times (Battelle Press: Columbus, OH (United States))

    Google Scholar 

  6. Hagen U, Harder D, Jung H and Streffer C 1995 Radiation Research 1895-1995 Congress Proceedings (Congress Lectures, 10th ICRR)

  7. LaVerne J A and Pimblott S M 1995 Electron energy-loss distributions in solid, dry DNA Radiat. Res. 141 208

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Michael B D and O’Neill P 2000 A sting in the tail of electron tracks Science 287 1603

    Article  CAS  PubMed  Google Scholar 

  9. Swiderek P 2006 Fundamental processes in radiation damage of DNA Angew. Chem. Int. Ed. 45 4056

    Article  CAS  Google Scholar 

  10. Pimblott S M and LaVerne J A 2007 Production of low-energy electrons by ionizing radiation Radiat. Phys. Chem. 76 1244

    Article  ADS  CAS  Google Scholar 

  11. Kopyra J, Wierzbicka P, Tulwin A, Thiam G, Bald I, Rabilloud F and Abdoul-Carime H 2021 Experimental and Theoretical Studies of Dissociative Electron Attachment to Metabolites Oxaloacetic and Citric Acids Int. J. Mol. Sci. 22 7676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pshenichnyuk A, Modelli A and Komolov S 2018 Interconnections between dissociative electron attachment and electron-driven biological processes Int. Rev. Phys. Chem. 37 125

    Article  CAS  Google Scholar 

  13. Alizadeh E, Orlando T M and Sanche L 2015 Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA Annu. Rev. Phys. Chem. 66 379

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Sanche L 2016 Interaction of low energy electrons with DNA: Applications to cancer radiation therapy Radiat. Phys. Chem. 128 36

    Article  ADS  CAS  Google Scholar 

  15. Becker D, Kumar A, Adhikary A and Sevilla M D 2020 g- and Ion-beam DNA Radiation Damage: Theory and Experiment. DNA Damage, DNA Repair and Disease (Royal Soc. Chem. (RSC): London, UK) p. 426

    Book  Google Scholar 

  16. Gao Y, Zheng Y and Sanche L 2021 Low-energy electron damage to condensed-phase DNA and its constituents Int. J. Mol. Sci. 22 7879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumari B, Huwaidi A, Robert G, Cloutier P, Bass AD, Sanche L and Wagner J R 2022 Shape Resonances in DNA: Nucleobase Release, Reduction, and Dideoxynucleoside Products Induced by 1.3 to 2.3 eV Electrons J. Phys. Chem. B 126 517

    Article  Google Scholar 

  18. Alizadeh E, Sanz A G, Garcia G and Sanche L 2013 Radiation damage to DNA: The indirect effect of low-energy electrons J. Phys. Chem. Lett. 4 825

    Article  Google Scholar 

  19. Boudaïffa B, Cloutier P, Hunting D, Huels M A and Sanche L 2000 Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons Science 287 1658

    Article  ADS  PubMed  Google Scholar 

  20. Huels M A, Boudaïffa B, Cloutier P, Hunting D and Sanche L 2003 Single, Double, and Multiple Double Strand Breaks Induced in DNA by 3–100 eV Electrons J. Am. Chem. Soc. 125 4467

    Article  CAS  PubMed  Google Scholar 

  21. Barrios R, Skurski P and Simons J 2002 Mechanism for Damage to DNA by Low-Energy Electrons J. Phys. Chem. B 106 7991

    Article  CAS  Google Scholar 

  22. Narayanan S J J, Tripathi D and Dutta A K 2021 Doorway Mechanism for Electron Attachment Induced DNA Strand Breaks J. Phys. Chem. Lett. 12 10380

    Article  Google Scholar 

  23. Mukherjee M, Tripathi D, Brehm M, Riplinger C and Dutta A K 2020 Efficient EOM-CC-based protocol for the calculation of electron affinity of solvated nucleobases: Uracil as a case study J. Chem. Theor. Comput. 17 116

    Google Scholar 

  24. Ranga S, Mukherjee M and Dutta A K 2020 Interactions of solvated electrons with nucleobases: The effect of base pairing ChemPhysChem 21 1027

    Article  Google Scholar 

  25. Ma J, Bahry T, Denisov S A, Adhikary A and Mostafavi M 2021 Quasi-Free Electron-Mediated Radiation Sensitization by C5-Halopyrimidines J. Phys. Chem. A 125 7967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gu B, Smyth M and Kohanoff J 2014 Protection of DNA against low-energy electrons by amino acids: a first-principles molecular dynamics study Phys. Chem. Chem. Phys. 16 24350

    Article  CAS  PubMed  Google Scholar 

  27. Ptasińska S, Li Z, Mason N J and Sanche L 2010 Damage to amino acid–nucleotide pairs induced by 1 eV electrons Phys. Chem. Chem. Phys. 12 9367

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dąbkowska I, Rak J, Gutowski M, Nilles J M, Stokes S T and Bowen K H Jr. 2004 Barrier-free intermolecular proton transfer induced by excess electron attachment to the complex of alanine with uracil J. Chem. Phys. 120 6064

    Article  ADS  PubMed  Google Scholar 

  29. Pelc A, Sailer W, Scheier P, Mason N J and Märk T D 2002 Low energy electron attachment to formic acid Eur. Phys. J. D. 20 441

    Article  ADS  CAS  Google Scholar 

  30. Sailer W, Pelc A, Probst M, Limtrakul J, Scheier P, Illenberger E and Märk T D 2003 Dissociative electron attachment to acetic acid (CH3COOH) Chem. Phys. Lett. 378 250

    Article  ADS  CAS  Google Scholar 

  31. Zawadzki M, Ranković M, Kočišek J and Fedor J 2018 Dissociative electron attachment and anion-induced dimerization in pyruvic acid Phys. Chem. Chem. Phys. 20 6838

    Article  CAS  PubMed  Google Scholar 

  32. Zawadzki M, Wierzbicka P and Kopyra J 2020 Dissociative electron attachment to benzoic acid (C7H6O2) J. Chem. Phys. 152 174304

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Arumainayagam C R, Lee H L, Nelson R B, Haines D R and Gunawardane R P 2010 Low-energy electron-induced reactions in condensed matter Surf. Sci. Rep. 65 1

    Article  ADS  CAS  Google Scholar 

  34. Liu C, Zheng Y and Sanche L 2022 Damage induced to DNA and its constituents by 0–3 eV UV photoelectrons Photochem. Photobiol. 98 563

    Article  Google Scholar 

  35. Khorsandgolchin G, Sanche L, Cloutier P and Wagner J R 2019 Strand breaks induced by very low energy electrons: Product analysis and mechanistic insight into the reaction with TpT J. Am. Chem. Soc. 141 10315

    Article  CAS  PubMed  Google Scholar 

  36. Singh R K, Sarma M and Mishra M K 2007 Approximate construction of local complex potentials for a time dependent wave packet based treatment of vibrational excitation cross-sections in resonant e-N2, e-CO and e-H2 scattering Indian J. Phys. 81 983

    CAS  Google Scholar 

  37. Sarma M, Adhikari S and Mishra M K 2007 Simple Systematization of Vibrational Excitation cross-section calculations for resonant electron-molecule scattering in the boomerang and impulse models J. Chem. Phys. 126 044309

    Article  ADS  PubMed  Google Scholar 

  38. Bhaskaran R, Bhowmick S, Mishra M K and Sarma M 2011 Low-Energy Electron-Induced Single Strand Breaks in 2′-Deoxycytidine-3′-Monophosphate Using the Local Complex Potential Based Time-Dependent Wave Packet Approach J. Phys. Chem. A 115 13753

    Article  Google Scholar 

  39. Bhaskaran R and Sarma M 2013 Effect of Quantum Tunneling on Single Strand Breaks in a Modeled Gas Phase Cytidine Nucleotide Induced by Low Energy Electron: A Theoretical Approach J. Chem. Phys. 139 045103

    Article  ADS  PubMed  Google Scholar 

  40. Bhaskaran R and Sarma M 2014 Low Energy Electron Induced Cytosine Base Release on 2’Deoxycytidine 3′-Monophosphate via Glycosidic Bond Cleavage: A Time-Dependent Wavepacket Study J. Chem. Phys. 141 104309

    Article  ADS  PubMed  Google Scholar 

  41. Bhaskaran R and Sarma M 2015 The Role of the Shape Resonance State in Low Energy Electron Induced Single Strand Break in 2’-deoxycytidine-5’-monophosphate Phys. Chem. Chem. Phys. 17 15250

    Article  CAS  PubMed  Google Scholar 

  42. Bhaskaran R and Sarma M 2015 Low-Energy Electron Interaction with the Phosphate Group in DNA Molecule and the Characteristics of Single-Strand Break Pathways J. Phys. Chem. A 119 10130

    Article  CAS  PubMed  Google Scholar 

  43. Bhowmick S, Mishra M K and Sarma M 2012 Investigation of dissociative electron attachment to 2′-deoxycytidine-3′-monophosphate using DFT method and time dependent wave packet approach J. Chem. Phys. 137 064310

    Article  ADS  PubMed  Google Scholar 

  44. Roothaan C C J 1951 New Developments in Molecular Orbital Theory Rev. Mod. Phys. 23 69

    Article  ADS  CAS  Google Scholar 

  45. Frisch M J, Head-Gordon M and Pople J A 1990 Direct MP2 gradient method Chem. Phys. Lett. 166 275

    Article  ADS  CAS  Google Scholar 

  46. Frisch M J, Head-Gordon M and Pople J A 1990 Semi-direct algorithms for the MP2 energy and gradient Chem. Phys. Lett. 166 281

    Article  ADS  CAS  Google Scholar 

  47. Head-Gordon M, Pople J A and Frisch M J 1988 MP2 energy evaluation by direct methods Chem. Phys. Lett. 153 503

    Article  ADS  CAS  Google Scholar 

  48. Saebø S and Almlöf J 1989 Avoiding the integral storage bottleneck in LCAO calculations of electron correlation Chem. Phys. Lett. 154 83

    Article  ADS  Google Scholar 

  49. Head-Gordon M and Head-Gordon T 1994 Analytic MP2 Frequencies Without Fifth Order Storage: Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer Chem. Phys. Lett. 220 122

    Article  ADS  CAS  Google Scholar 

  50. Weigend F and Ahlrichs R 2005 Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy Phys. Chem. Chem. Phys. 7 3297

    Article  CAS  PubMed  Google Scholar 

  51. Weigend F 2006 Accurate Coulomb-fitting basis sets for H to Rn Phys. Chem. Chem. Phys. 8 1057

    Article  CAS  PubMed  Google Scholar 

  52. Weigend F 2008 Hartree- Fock fitting basis sets for H to Rn J. Comput. Chem. 29 167

    Article  CAS  PubMed  Google Scholar 

  53. Liakos D G, Kesharwani Sparta M, Martin M K and J M and Neese F 2015 Exploring the accuracy limits of local pair natural orbital coupled-cluster theory J. Chem. Theor. Comput. 11 1525

    Article  CAS  Google Scholar 

  54. Guo Y, Sivalingam K, Valeev E F and Neese F 2016 Sparse Maps—A Systematic Infrastructure for Reduce d-Scaling Electronic Structure Methods. III. Linear-Scaling Multireference Domain-Based Pair Natural Orbital N-Electron Valence Perturbation Theory J. Chem. Phys. 144 094111

    Article  ADS  PubMed  Google Scholar 

  55. Dutta A K, Neese F and Izsák R 2016 Towards a Pair Natural Orbital Coupled Cluster Method for Excited States J. Chem. Phys. 145 034102

    Article  ADS  PubMed  Google Scholar 

  56. Reed A E, Curtiss L A and Weinhold F 1988 Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint Chem. Rev. 88 899

    Article  CAS  Google Scholar 

  57. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al. 2016 Gaussian 16, Revision C.01 (Wallingford, CT: Gaussian Inc)

    Google Scholar 

  58. Neese F 2022 Software update: The ORCA program system—Version 5.0. Wiley Interdisciplinary Reviews: Comput. Mol. Sci. 12 1606

    Article  Google Scholar 

  59. Marston C C and Balint-Kurti G G 1989 The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions J. Chem. Phys. 91 3571

    Article  ADS  MathSciNet  CAS  Google Scholar 

  60. Zhang J, Imre D G and Frederick J H 1989 HOD spectroscopy and photodissociation dynamics: selectivity in hydroxyl/hydroxyl-d bond breaking J. Phys. Chem. 93 1840

    Article  CAS  Google Scholar 

  61. Leforestier C, Bisseling R H, Cerjan C, Feit M D, Friesner R, Guldberg A, et al. 1991 comparison of different propagation schemes for the time dependent Schrödinger equation J. Comput. Phys. 94 59

    Article  ADS  MathSciNet  Google Scholar 

  62. Aflatooni K, Gallup G A and Burrow P D 1998 Electron attachment energies of the DNA bases J. Phys. Chem. A 102 6205

    Article  CAS  Google Scholar 

  63. Rienstra-Kiracofe J C, Tschumper G S, Schaefer H F, Nandi S and Ellison G B 2002 Atomic and molecular electron affinities: photoelectron experiments and theoretical computations Chem. Rev. 102 231

    Article  CAS  PubMed  Google Scholar 

  64. Lee T J and Taylor P R 1989 A diagnostic for determining the quality of single-reference electron correlation methods Int. J. Quantum. Chem. 36 199

    Article  Google Scholar 

  65. Rana A and Sarma M 2019 Computational Investigation of Dissociative Electron Attachment to Ammonia J. Indian Chem. Soc. 96 785

    CAS  Google Scholar 

  66. Sanche L and Schulz G J 1973 Electron transmission spectroscopy: Resonances in triatomic molecules and hydrocarbons J. Chem. Phys. 58 479

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Supercomputing facility ‘PARAM-Ishan’ and National Supercomputing Mission (NSM) for providing computing resources of ‘PARAM Kamrupa’ at IIT Guwahati, which is implemented by C-DAC and supported by the Ministry of Electronics and Information Technology (MeitY). This work has been partially supported by a grant from the Department of Science and Technology (DST) [Grant No. SB/S1/PC-90/2012], India, to M.S. S. K. acknowledges PMRF and the Ministry of Human resource development, Government of India, H.K.S acknowledges the Ministry of Human resource development, Government of India. H.P.B. is thankful for the support from the Department of Science and Technology (DST), Government of India for the fellowship vide the registration number IF170899/2017. The authors also thank the Department of Chemistry, IIT Guwahati, for infrastructure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabendra Sarma.

Additional information

Dedicated to Prof. S.P. Bhattacharyya on the occasion of his 75th birthday.

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 409 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, H.K., Bhattacharyya, H.P. et al. Low energy electron interaction with citric acid: a local complex potential based time-dependent wavepacket study. J Chem Sci 135, 88 (2023). https://doi.org/10.1007/s12039-023-02200-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02200-2

Keywords

Navigation