Log in

Selective turn-on sensing of fluoroquinolone drugs by zinc complexes of amide-based ligands

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

This work presents two mononuclear Zn(II) complexes of amide-based pincer ligands where migration of protons from the amidic N–H groups to the appended heterocyclic rings resulted in their protonation. The crystal structures of both the zinc complexes illustrated that such protonated heterocyclic rings created an H-bonding based secondary coordination sphere. Both complexes were utilized for the selective detection of fluoroquinolone antibiotics ciprofloxacin and norfloxacin. The two complexes exhibited high selectivity for norfloxacin with nanomolar detection limits of 290 and 460. The binding studies were further supported with the NMR spectroscopic and the molecular docking studies that exhibited that an antibiotic interacts with a zinc complex that was responsible for its emission enhancement based detection.

Graphic abstract

Synopsis This work presents two structurally characterized zinc complexes of amide-based ligands and their role in the selective detection of fluoroquinolone antibiotics ciprofloxacin and norfloxacin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lavaee P, Danesh NM, Ramezani M, Abnous K and Taghdisi SM 2017 Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles Microchim. Acta 184 2039

    Article  CAS  Google Scholar 

  2. Ballesteros O, Toro I, Sanz-Nebot V, Navalón A, Vilchez J L and Barbosa J, 2003 Determination of fluoroquinolones in human urine by liquid chromatography coupled to pneumatically assisted electrospray ionization mass spectrometry J. Chromatogr. B 798 137

    Article  CAS  Google Scholar 

  3. Gao B, He X-P, Jiang Y, Wei J-T, Suo H and Zhao C 2014 Computational simulation and preparation of fluorescent magnetic molecularly imprinted silica nanospheres for ciprofloxacin or norfloxacin sensing J. Sep. Sci. 37 3753

    Article  CAS  PubMed  Google Scholar 

  4. Davis R, Markham A and Balfour J A 1996 Ciprofloxacin Drugs 51 1019

    Article  CAS  PubMed  Google Scholar 

  5. Prieto A, Schrader S, Bauer C and Möder M 2011 Synthesis of a molecularly imprinted polymer and its application for microextraction by packed sorbent for the determination of fluoroquinolone related compounds in water Anal. Chim. Acta 685 146

    Article  CAS  PubMed  Google Scholar 

  6. Wang B, Jiang Y, Li F and Yang D 2017 Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water Bioresour. Technol. 233 159

    Article  CAS  PubMed  Google Scholar 

  7. Haque M M and Muneer M 2007 Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide J. Hazard. Mater. 145 51

    Article  CAS  PubMed  Google Scholar 

  8. Rodríguez E, Navarro-Villoslada F, Benito-Peña E, Marazuela MD and Moreno-Bondi MC 2011 Multiresidue determination of ultratrace levels of fluoroquinolone antimicrobials in drinking and aquaculture water samples by automated online molecularly imprinted solid phase extraction and liquid chromatography Anal. Chem. 83 2046

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Q, Jia A, Wan Y, Liu H, Wang K, Peng H, et al. 2014 Occurrences of three classes of antibiotics in a natural river basin: association with antibiotic-resistant Escherichia coli Environ. Sci. Technol. 48 14317

    Article  CAS  PubMed  Google Scholar 

  10. Cester C C and Toutain P L 1997 A comprehensive model for enrofloxacin to ciprofloxacin transformation and disposition in dog J. Pharm. Sci. 86 1148

    Article  CAS  PubMed  Google Scholar 

  11. Chung H-H, Lee J-B, Chung Y-H and Lee K-G 2009 Analysis of sulfonamide and quinolone antibiotic residues in Korean milk using microbial assays and high performance liquid chromatography Food Chem. 113 297

    Article  CAS  Google Scholar 

  12. Lombardo-Agüí M, García-Campaña AM, Gámiz-Gracia L and Cruces Blanco C 2010 Laser induced fluorescence coupled to capillary electrophoresis for the determination of fluoroquinolones in foods of animal origin using molecularly imprinted polymers J. Chromatogr. A 1217 2237

    Article  PubMed  CAS  Google Scholar 

  13. Huang K-J, Liu X, **e W-Z and Yuan H-X 2008 Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion Colloids Surf. B: Biointerf. 64 269

    Article  CAS  Google Scholar 

  14. Goyal R N, Rana A R S and Chasta H 2012 Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals Bioelectrochem. 83 46

    Article  CAS  Google Scholar 

  15. Dang P K, Degand G, Danyi S, Pierret G, Delahaut P, Ton V D, et al. 2010 Validation of a two-plate microbiological method for screening antibiotic residues in shrimp tissue Anal. Chim. Acta 672 30

    Article  CAS  PubMed  Google Scholar 

  16. Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J and James T D 2017 Fluorescent chemosensors: the past, present and future Chem. Soc. Rev. 46 7105

    Article  CAS  PubMed  Google Scholar 

  17. Shanmugaraju S and Mukherjee P S 2015 Self-assembled discrete molecules for sensing nitroaromatics Chem. Eur. J. 21 6656

    Article  CAS  PubMed  Google Scholar 

  18. Cook S A and Borovik A S 2015 Molecular designs for controlling the local environments around metal ions Acc. Chem. Res. 48 2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sk Amanullah, Saha P, Nayek A, Ahmed MdE and Dey A 2021 Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis Chem. Soc. Rev. 50 3755

    Article  Google Scholar 

  20. Shook R L and Borovik A S 2008 The effect of hydrogen bonds on metal-mediated O2 activation and related processes Chem. Commun. 46 6095

    Article  CAS  Google Scholar 

  21. Bansal D and Gupta R 2019 Selective sensing of ATP by hydroxide-bridged dizinc(II) complexes offering a hydrogen bonding cavity Dalton Trans. 48 14737

    Article  CAS  PubMed  Google Scholar 

  22. Bansal D and Gupta R 2017 Hydroxide-bridged dicopper complexes: the influence of secondary coordination sphere on structure and catecholase activity Dalton Trans. 46 4617

    Article  CAS  PubMed  Google Scholar 

  23. Bansal D, Kumar G, Hundal G and Gupta R 2014 Mononuclear complexes of amide-based ligands containing appended functional groups: role of secondary coordination spheres on catalysis Dalton Trans. 43 14865

    Article  CAS  PubMed  Google Scholar 

  24. Prabha D, Pachisia S and Gupta R 2021 Cobalt mediated N-alkylation of amines by alcohols: role of hydrogen bonding pocket Inorg. Chem. Front. 8 1599

    Article  CAS  Google Scholar 

  25. Bansal D and Gupta R 2016 Chemosensors containing appended benzothiazole group(s): selective binding of Cu2+ and Zn2+ ions by two related receptors Dalton Trans. 45 502

    Article  CAS  PubMed  Google Scholar 

  26. CrysAlisPro, v. 1.171.33.49b, Oxford Diffraction Ltd., 2009

  27. Altomare A, Cascarano G, Giacovazzo C and Guagliardi A 1993 Completion and refinement of crystal structures with SIR92 J. Appl. Cryst. 26 343

    Article  Google Scholar 

  28. Sheldrick G M 2014 Program for the solution of crystal structures(University of Gottingen: Gottingen, Germany)

    Google Scholar 

  29. Farrugia L J 2003 An integrated system of windows programs for the solution, refinement and analysis of single-crystal X-ray diffraction data, Department of Chemistry, University of Glasgow

  30. Kumar V, Kumar P, Kumar S, Singhal D and Gupta R 2019 Turn-on fluorescent sensors for the selective detection of Al3+ (and Ga3+) and PPi ions Inorg. Chem. 58 10364

    Article  CAS  PubMed  Google Scholar 

  31. Kumar P, Kumar V and Gupta R 2015 Arene-based fluorescent probes for the selective detection of iron RSC Adv. 5 97874

    Article  CAS  Google Scholar 

  32. Sudheer, Kumar V, Kumar P and Gupta R 2020 Detection of Al3+ and Fe3+ ions by nitrobenzoxadiazole bearing pyridine-2,6-dicarboxamide based chemosensors: effect of solvents on detection New. J. Chem. 44 13285

    Article  CAS  Google Scholar 

  33. Kumar S, Kishan R, Kumar P, Pachisia S and Gupta R 2018 Size-selective detection of picric acid by fluorescent palladium macrocycles Inorg. Chem. 57 1693

    Article  CAS  PubMed  Google Scholar 

  34. Benesi H A and Hildebrand J H 1949 A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons J. Am. Chem. Soc. 71 2703

    Article  CAS  Google Scholar 

  35. Nakamoto K 2008 Infrared and Raman spectra of inorganic and coordination compounds: part a: theory and applications in inorganic chemistry 6th edn. (John Wiley: Hoboken, NJ)

    Google Scholar 

  36. Nakamoto K 2008 Infrared and Raman spectra of inorganic and coordination compounds: part b: applications in coordination, organometallic, and bioinorganic chemistry 6th edn. (John Wiley: Hoboken, NJ)

  37. Geary W J 1971 The use of conductivity measurements in organic solvents for the characterisation of coordination compounds Coord. Chem. Rev. 7 81

    Article  CAS  Google Scholar 

  38. Reimann M J, Salmon D R, Horton J T, Gier E C and Jefferies L R 2019 Water-soluble sulfonate schiff-base ligands as fluorescent detectors for metal ions in drinking water and biological systems ACS Omega 4 2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gusev A, Braga E, Zamnius E, Kiskin M, Kryukova M, Baryshnikova A, et al. 2019 Structure and excitation-dependent emission of novel zinc complexes with pyridyltriazoles RSC Adv. 9 22143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rajamanikandan R and Ilanchelian M 2018 Fluorescence sensing approach for high specific detection of 2,4,6-trinitrophenol using bright cyan blue color-emittive poly(vinylpyrrolidone)-supported copper nanoclusters as a fluorophore ACS Omega 3 18251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang D and Holm R H 2010 Reactions of the terminal NiII−OH group in substitution and electrophilic reactions with carbon dioxide and other substrates: structural definition of binding modes in an intramolecular NiII···FeII bridged site J. Am. Chem. Soc. 132 4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Donoghue P J, Gupta A K, Boyce D W, Cramer C J and Tolman W B 2010 An anionic, tetragonal copper(II) superoxide complex J. Am. Chem. Soc. 132 15869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Donoghue P J, Tehranchi J, Cramer CJ, Sarangi R, Solomon E I and Tolman W B 2011 Rapid C-H bond activation by a monocopper(III)–hydroxide complex J. Am. Chem. Soc. 133 17602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Halvagar M R and Tolman W B 2013 Isolation of a 2-Hydroxytetrahydrofuran Complex From Copper-Promoted Hydroxylation of THF Inorg. Chem. 52 8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Addison A W, Rao T N, Reedijk J, Rijn J van and Verschoor G C 1984 Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate J. Chem. Soc. Dalton Trans. 1349

  46. Redmore S M, Rickard C E F, Webb S J and Wright L J 1997 Ruthenium complexes of a simple tridentate ligand bearing two “distal” pyridine bases Inorg. Chem. 36 4743

    Article  CAS  PubMed  Google Scholar 

  47. Wang D, Lindeman S V and Fiedler A T 2013 Intramolecular hydrogen bonding in CuII complexes with 2,6-pyridinedicarboxamide ligands: synthesis, structural characterization, and physical properties Eur. J. Inorg. Chem. 2013 4473

    Article  CAS  Google Scholar 

  48. Pandey S, Kumar P and Gupta R 2018 Polymerization led selective detection and removal of Zn2+ and Cd2+ ions: isolation of Zn- and Cd-MOFs and reversibility studies Dalton Trans. 47 14686

    Article  CAS  PubMed  Google Scholar 

  49. Kumar G, Pachisia S, Kumar P, Kumar V and Gupta R 2019 Zn- and Cd-based coordination polymers offering H-bonding cavities: highly selective sensing of S2O72− and Fe3+ ions Chem. Asian J. 14 4594

    Article  CAS  PubMed  Google Scholar 

  50. Terenzi A, Lauria A, Almerico A M and Barone G 2015 Zinc complexes as fluorescent chemosensors for nucleic acids: new perspectives for a “boring” element Dalton Trans. 44 3527

    Article  CAS  PubMed  Google Scholar 

  51. Kumar P, Kumar V and Gupta R 2017 Detection of the anticoagulant drug warfarin by palladium complexes Dalton Trans. 46 10205

    Article  CAS  PubMed  Google Scholar 

  52. Kumar P, Kumar V and Gupta R 2017 Selective fluorescent turn-off sensing of Pd2+ ion: applications as paper strips, polystyrene films, and in cell imaging RSC Adv. 7 7734

    Article  CAS  Google Scholar 

  53. Kumar V, Kumar P and Gupta R 2017 Fluorescent detection of multiple ions by two related chemosensors: structural elucidations and logic gate applications RSC Adv. 7 23127

    Article  CAS  Google Scholar 

  54. Kumar P, Kumar V, Pandey S and Gupta R 2018 Detection of sulfide ion and gaseous H2S using a series of pyridine-2,6-dicarboxamide based scaffolds Dalton Trans. 47 9536

    Article  CAS  PubMed  Google Scholar 

  55. Ritchie D 2012 Hex Inria; http://hex.loria.fr/

  56. Pachisia S and Gupta R 2019 Two Hg(II)-based macrocycles offering hydrogen bonding cavities: influence of cavity structure on heterogeneous catalysis Cryst. Growth Des. 19 6039

    Article  CAS  Google Scholar 

  57. Hua J, Jiao Y, Wang M and Yang Y 2018 Determination of norfloxacin or ciprofloxacin by carbon dots fluorescence enhancement using magnetic nanoparticles as adsorbent Microchim. Acta 185 137

    Article  CAS  Google Scholar 

  58. Niu M, Yang X, Ma Y, Hao W, Leng X and Schipper D 2021 Construction of Zn(II)/Cd(II)−Yb(III) schiff base complexes for the NIR luminescent sensing of fluoroquinolone antibiotics Inorg. Chem. 60 5764

    Article  CAS  PubMed  Google Scholar 

  59. Gai S, Zhang J, Fan R, **ng K, Chen W, Zhu K, et al. 2020 Highly stable zinc-based meatl-organic frameworks and corresponding flexible composites for removal and detection of antibiotics in water ACS Appl. Mat. Interf. 12 8650

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RG acknowledges financial assistance from the Council of Scientific and Industrial Research, New Delhi (01(2841)/16/EMR-II) and IoE project from the University of Delhi. DP thanks UGC, New Delhi for her fellowship. DS thanks CSIR, New Delhi for his fellowship. Authors thank CIF-USIC at this university for the instrumental facilities including X-ray data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Gupta.

Additional information

We dedicate this manuscript to the memory of late Prof. Bhaskar G. Maiya

Special Issue on Beyond Classical Chemistry.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabha, D., Singh, D. & Gupta, R. Selective turn-on sensing of fluoroquinolone drugs by zinc complexes of amide-based ligands. J Chem Sci 133, 88 (2021). https://doi.org/10.1007/s12039-021-01956-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01956-9

Keywords

Navigation