Log in

Mn3O4 nano-sized crystals: Rapid synthesis and extension to preparation of nanosized LiMn2O4 materials

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

With a novel gas–liquid reaction, a facile and rapid method has been successfully developed for the synthesis of nano-sized Mn3O4 crystals. Coupled with complementary experiments, preparation mechanisms of Mn(II) and Mn(III)Mn(III)Mn(II) coordination complexes as well as nano-sized Mn3O4 crystals are studied. Besides, as the extension of synthesis of nano-sized Mn3O4 crystals, the intermediate ammonia alkaline solution containing Mn(III)Mn(III)Mn(II) coordination complexes, which tend to decompose into nano-sized Mn3O4 crystals spontaneously, are used to prepare nanosized LiMn2O4 materials. Although any physical treatment has been done to disperse powders, the as-synthesized LiMn2O4 nanoparticles are still existence with homogeneous size distribution (about 24.2 nm) without any obvious agglomeration. That is to say, the novel method is constructive not only to accelerate reaction rates for the elevated oxidation state of manganese ions, but also to prepare dispersed nanosized LiMn2O4 materials with good electrochemical properties.

With a novel gas–liquid reaction, a facile and rapid method has been successfully developed for the synthesis of nano-sized Mn3O4 crystals Besides, with intermediate ammonia alkaline solution containing Mn(III)Mn(III)Mn(II) coordination complexes, high-purity and wellcrystallized LiMn2O4 materials are obtained. The as-synthesized LiMn2O4 nanoparticles show good electrochemical properties..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Piligkos S, Rajaraman G, Soler M, Kirchner N, Van Slageren J, Bircher R, Parsons S, Gudel H U, Kortus J, Wernsdorfer W, Christou G and Brechin E K 2005 J. Am. Chem. Soc. 127 5572

  2. Yoshikai N, Zhang S L, Yamagata K I, Tsuji H and Nakamura E 2009 J. Am. Chem. Soc. 131 4099

    Article  CAS  Google Scholar 

  3. Reddy A L M, ShaijumonM M, Gowda S R and Ajayan P M 2009 Nano Lett. 9 1002

    Article  CAS  Google Scholar 

  4. Kolts J H and Delzer G A 1986 Science 232 744

    Article  CAS  Google Scholar 

  5. Li X Q, Zhou L P, Gao J, Miao H, Zhang H and Xu J 2009 Powder Technol. 190 324

    Article  CAS  Google Scholar 

  6. Zhang L C, Zho Q U, Liu Z H, Hou X D, Li Y B and Lv Y 2009 Chem. Mater. 21 5066

    Article  CAS  Google Scholar 

  7. Zhang H M, Lian C H G, Tian Z F, Wang G Z and Cai W P 2010 J. Phys. Chem. C 114 12524

    Article  CAS  Google Scholar 

  8. Durmus Z, Baykal A, Kavas H, Direkci M and Toprak M S 2009 Polyhedron 28 2119

    Article  CAS  Google Scholar 

  9. Davar F, Salavati-Niasari M, Mir N, Saberyan K, Monemzadeh M and Ahmadi E 2010 Polyhedron 29 1747

    Article  CAS  Google Scholar 

  10. Mehdizadeh R, Saghatforoush L A and Sanati S 2012 Superlattice Microst. 52 92

    Article  CAS  Google Scholar 

  11. AnilkumarM and Ravi V 2005 Mater. Res. Bull. 40 605

    Article  CAS  Google Scholar 

  12. Fang Z, Tang K, Gao L,Wang D, Zeng S and Liu Q 2007 Mater. Res. Bull. 42 1761

    Article  CAS  Google Scholar 

  13. Wang N, Guo L, He L, Ca X O, Chen C P, Wang R and Yang S H 2007 Small 3 606

    Article  CAS  Google Scholar 

  14. Hu G R, Jiang J B, Pen Z D G, Du K, Cao Y B and Duan J G 2013 J. Nanosci. Nanotechnol. 13 2262

    Article  CAS  Google Scholar 

  15. Lu Z Y, Rui X H, Tan H T, Zhang W Y, Hng H H and Yan Q Y 2013 Chem. Plus. Chem. 78 218

    Article  CAS  Google Scholar 

  16. **ang X D, Fu Z and Li W S 2013 J. Solid State Electrochem. 17 1201

    Article  CAS  Google Scholar 

  17. Ni L P, Cheng X M, Wang X F, Tao Y L, Shen Y H, Zhang T, Sun H R and **e A J 2013 Ionics 19 259

    Article  CAS  Google Scholar 

  18. Liu L, Yang H X, Wei J J and Yang Y Z 2011 Mater. Lett. 65 694

    Article  CAS  Google Scholar 

  19. Dubal DP, Holze R (2012). RSC Adv. 2, 12096

    Article  CAS  Google Scholar 

  20. Christmas C, Vincent J B, Chang H R, Huffman J C, Christou G and Hendrickson D N 1988 J. Am. Chem. Soc. 110 823

    Article  CAS  Google Scholar 

  21. Hu C C, Wu Y T and Chang K H 2008 Chem. Mater. 20 2890

    Article  CAS  Google Scholar 

  22. Jo M, Lee Y K, Kim K M and Cho J 2010 J. Electrochem. Soc. 157 841

    Article  Google Scholar 

  23. Cui X L, Li Y L, Li S Y, Li L X and Liu J L 2013 Ionics 19 1489

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Planning Project of Gansu Province (No. 1308RJZA259) and the Branchy Tamarisk Development Program for Young Teachers of Lanzhou University of Technology (No. Q201311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHI-YOU LI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CUI, XL., LI, YL., LI, SY. et al. Mn3O4 nano-sized crystals: Rapid synthesis and extension to preparation of nanosized LiMn2O4 materials. J Chem Sci 126, 561–567 (2014). https://doi.org/10.1007/s12039-014-0592-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0592-1

Keywords

Navigation