Log in

Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (Texr) and a double mutant (Texr K271R + N273D) with altered coenzyme specificity

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene encoding xylose reductase (Texr) was isolated from the thermophilic fungus Talaromyces emersonii, expressed in Escherichia coli and purified to homogeneity. Texr encodes a 320 amino acid protein with a molecular weight of 36 kDa, which exhibited high sequence identity with other xylose reductase sequences and was shown to be a member of the aldoketoreductase (AKR) superfamily with a preference for reduced nicotinamide adenine dinucleotide phosphate (NADPH) as coenzyme. Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed mutagenesis. The TeXRK271R+N273D double mutant displayed an altered coenzyme preference with a 16-fold improvement in NADH utilization relative to the wild type and therefore has the potential to reduce redox imbalance of xylose fermentation in recombinant S. cerevisiae strains. Expression of Texr was shown to be inducible by the same carbon sources responsible for the induction of genes encoding enzymes relevant to lignocellulose hydrolysis, suggesting a coordinated expression of intracellular and extracellular enzymes relevant to hydrolysis and metabolism of pentose sugars in T. emersonii in adaptation to its natural habitat. This indicates a potential advantage in survival and response to a nutrient-poor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AKR:

aldoketoreductase

BSA:

bovine serum albumin

IPTG:

isopropylthio-β-galactoside

LOOPP:

Learning, Observing and Outputting Protein Patterns

NADH:

reduced form of nicotinamide adenine dinucleotide

NADPH:

reduced nicotinamide adenine dinucleotide phosphate

NCBI:

National Centre for Biotechnological Information

PCR:

polymerase chain reaction

RACE:

rapid amplification of cDNA ends

References

  • Altschul S F, Gish W, Miller W, Myers E W and Lipman D J 1990 Basic local alignment search tool; J. Mol. Biol. 215 403–410

    CAS  PubMed  Google Scholar 

  • Amore R, Kotter P, Kuster C, Ciriacy M and Hollenberg C P 1991 Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis; Gene 109 89–97

    Article  CAS  PubMed  Google Scholar 

  • Bairoch A, Apweiler R, Wu C H, Barker W C, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin M J, Natale D A, O’Donovan C, Redaschi N and Yeh L S 2005 The Universal Protein Resource (UniProt); Nucleic Acids Res. 33 154–159

    Article  Google Scholar 

  • Billard P, Menart S, Fleer, R and Bolotin-Fukuhara M 1995 Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis; Gene 162 93–97

    Article  CAS  PubMed  Google Scholar 

  • Bradford M M 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding; Anal. Biochem. 72 248–254

    Article  CAS  PubMed  Google Scholar 

  • Branden I C 1991 The TIM barrel — the most frequently occuring folding motif in proteins; Curr. Opin. Struct. Biol. 1 978–983

    Article  Google Scholar 

  • Brooks M M, Tuohy M G, Savage A V, Claeyssens M and Coughlan M P 1992 The stereochemical course of reactions catalysed by the cellobiohydrolases produced by Talaromyces emersonii; Biochem. J. 283 31–34

    CAS  PubMed  Google Scholar 

  • Chomczynski P and Sacchi N 1987 Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction; Anal. Biochem. 162 156–159

    Article  CAS  PubMed  Google Scholar 

  • Di Luccio E, Elling R A and Wilson D K 2006 Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies; Biochem. J. 400 105–114

    Article  PubMed  Google Scholar 

  • Fernandes S, Murray P G and Tuohy M G 2008 Enzyme systems from the thermophilic fungus Talaromyces emersonii for sugar beet bioconversion; Bioresources 3 898–909

    Google Scholar 

  • Hahn-Hägerdal B, Wahlbom C F, Gardonyi M, van Zyl W H, Cordero Otero R R and Jonsson L J 2001 Metabolic engineering of Saccharomyces cerevisiae for xylose utilization; Adv. Biochem. Eng. Biotechnol. 73 53–84

    PubMed  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grausland M-F, Liden G and Zacchi G 2006 Bio-ethanol — the fuel of tommorrow from the residues of today; Trends Biotechnol. 24 549–556

    Article  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I and Gorwa-Grauslund M F 2007 Towards industrial pentosefermenting yeast strains; Appl. Microbiol. Biotechnol. 74 937–953

    Article  PubMed  Google Scholar 

  • Handumrongkul C, Ma D P and Silva J L 1998 Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris; Appl. Microbiol. Biotechnol. 49 399–404

    Article  CAS  PubMed  Google Scholar 

  • Hasper A A, Visser J and de Graaff L H 2000 The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression; Mol. Microbiol. 36 193–200

    Article  CAS  PubMed  Google Scholar 

  • Higgins D G 1994 CLUSTAL W: multiple alignment of DNA and protein sequences; Methods Mol. Biol. 2 307–318

    Google Scholar 

  • Hyndman D, Bauman, D R, Heredia V V and Penning T M 2003 The aldo-keto reductase superfamily homepage; Chem. Biol. Interact. 143 621–631

    Article  PubMed  Google Scholar 

  • Jez J M, Bennett M J, Schlegel B P, Lewis M and Penning T M 1997 Comparative anatomy of the aldo-keto reductase superfamily; Biochem. J. 326 625–636

    CAS  PubMed  Google Scholar 

  • Jez J M and Penning T M 2001 The aldo-keto reductase (AKR) superfamily: an update; Chem. Biol. Interact. 130 499–525

    Article  PubMed  Google Scholar 

  • Jung-Kul L, Bong-seong K and Sang-Yong K 2003 Cloning and characterisation of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis; Appl. Environ. Microbiol. 69 6179–6188

    Article  Google Scholar 

  • Kavanagh K L, Klimacek M, Nidetzky B and Wilson D K 2003 Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases; Biochem. J. 373 319–326

    Article  CAS  PubMed  Google Scholar 

  • Kostrzynska M, Sopher C R and Lee H 1998 Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase; FEMS Microbiol. Lett. 159 107–112

    Article  CAS  PubMed  Google Scholar 

  • Kratzer R, Kavanagh K L, Wilson D K and Nidetzky B 2004 Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant; Biochemistry 43 4944–4954

    Article  CAS  PubMed  Google Scholar 

  • Kratzer R, Leitgeb S, Wilson D K and Nidetzky B 2006 Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis; Biochem. J. 393 51–58

    Article  CAS  PubMed  Google Scholar 

  • Leitgeb S, Petschacher B, Wilson D K and Nidetzky B 2005 Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274→Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+; FEBS Lett. 579 763–767

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Zhang J and Lin Z 2007 Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing; Microb. Cell Fact. 6 36

    Article  PubMed  Google Scholar 

  • Liu Z, Cai R and Wang J 2006 Reviews in fluorescence 2006 — current development in the determination of intracellular NADH level (New York: Plenum Publishers)

    Google Scholar 

  • McCarthy T, Hanniffy O, Savage A V and Tuohy M G 2003 Catalytic properties and mode of action of three endo-betaglucanases from Talaromyces emersonii on soluble beta-1,4- and beta-1,3;1,4-linked glucans; Int. J. Biol. Macromol. 33 141–148

    Article  CAS  PubMed  Google Scholar 

  • McCarthy T, Lalor E, Hanniffy O, Savage A V and Tuohy M G 2005 Comparison of wild-type and UV-mutant beta-glucanaseproducing strains of Talaromyces emersonii with potential in brewing applications; J. Ind. Microbiol. Biotechnol. 32 125–134

    Article  CAS  PubMed  Google Scholar 

  • Moloney A, Considine P J and Coughlan M P 1983 Cellulose hydrolysis by Talaromyces emersonii grown on different substrates; Biotech. Bioeng. 25 1169–1173

    Article  CAS  Google Scholar 

  • Moloney A P, McCrae S I, Wood T M and Coughlan M P 1985 Isolation and characterization of the endoglucanases of Talaromyces emersonii; Biochem. J. 225 365–374

    CAS  PubMed  Google Scholar 

  • Murray P G, Grassick A, Laffey C D, Cuffe M M, Higgins T, Savage A V, Planas A and Tuohy M G 2001 Isolation and characterization of a thermostable endo-beta-glucanase active on 1,3-1,4-beta-D-glucans from the aerobic fungus Talaromyces emersonii CBS 814.70; Enzyme Microb. Technol. 29 90–98

    Article  CAS  PubMed  Google Scholar 

  • Murray P G, Collins C M, Grassick A and Tuohy M G 2003 Molecular cloning, transcriptional, and expression analysis of the first cellulase gene (cbh2), encoding cellobiohydrolase II, from the moderately thermophilic fungus Talaromyces emersonii and structure prediction of the gene product; Biochem. Biophys. Res. Commun. 301 280–286

    Article  CAS  PubMed  Google Scholar 

  • Petschacher B, Leitgeb S, Kavanagh K L, Wilson D K and Nidetzky B 2005 The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography; Biochem. J. 385 75–83

    Article  CAS  PubMed  Google Scholar 

  • Petschacher B and Nidetzky B 2005 Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions; Appl. Environ. Microbiol. 71 6390–6393

    Article  CAS  PubMed  Google Scholar 

  • Petschacher B and Nidetzky B 2008 Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae; Microb. Cell Fact. 7 9

    PubMed  Google Scholar 

  • Raeder U and Broda P 1985 Rapid preparation of DNA from filamentous fungi; Lett. Appl. Microbiol. 1 17–20

    Article  CAS  Google Scholar 

  • Rost B 1996 PHD: predicting one-dimensional protein structure by profile-based neural networks; Methods Enzymol. 266 525–539

    Article  CAS  PubMed  Google Scholar 

  • Schlegel B P, Jez J M and Penning T M 1998 Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a “pushpull” mechanism for proton transfer in aldo-keto reductases; Biochemistry 37 3538–3548

    Article  CAS  PubMed  Google Scholar 

  • Stolk A C and Sampson R A 1972 The genus Talaromyces — studies in mycology 2 (Baarn: Centraalbureau Voor Schimmelcultures Publishers)

    Google Scholar 

  • Stricker A R, Grosstessner-Hain K, Würleitner E and Mach R L 2006 Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina; Eukaryot. Cell 5 2128–2137

    Article  CAS  PubMed  Google Scholar 

  • Tuohy M G and Coughlan M P 1992 Production of thermostable xylan degrading enzymes by Talaromyces emersonii CBS 814.70; Bioresource Technol. 39 131–137

    Article  CAS  Google Scholar 

  • Tuohy M G, Puls J, Claeyssens M, Vrsanská M and Coughlan M P 1993 The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl beta-Dxylosides and unsubstituted xylans; Biochem. J. 290 515–523

    CAS  PubMed  Google Scholar 

  • Tuohy M G, Walsh D J, Murray P G, Claeyssens M, Cuffe M M, Savage A V and Coughlan M P 2002 Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii; Biochim. Biophys. Acta 1596 366–380

    CAS  PubMed  Google Scholar 

  • van Kuyk P A, de Groot M J, Ruijter G J, de Vries R P and Visser J 2001 The Aspergillus niger D-xylulose kinase gene is coexpressed with genes encoding arabinan degrading enzymes, and is essential for growth on D-xylose and L-arabinose; Eur. J. Biochem. 268 5414–5423

    Article  Google Scholar 

  • van Peij N N, Gielkens M M, de Vries R P, Visser J and de Graaff L H 1998 The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger; Appl. Environ. Microbiol. 64 3615–3619

    PubMed  Google Scholar 

  • Watanabe S, Abu Saleh A, Pack S P, Annaluru N, Kodaki T and Makino K 2007 Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis; Microbiology 153 3044–3054

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick G. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, S., Tuohy, M.G. & Murray, P.G. Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (Texr) and a double mutant (Texr K271R + N273D) with altered coenzyme specificity. J Biosci 34, 881–890 (2009). https://doi.org/10.1007/s12038-009-0102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0102-7

Keywords

Navigation