Log in

Infrared polarisation study of Lynds 1340: A case of RNO 8

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

This paper describes the polarisation study of a Lynds cloud, LDN 1340, \(\alpha = 2\)h32m and \(\delta = 73^{\circ } 00^\prime \) corresponding to galactic coordinates of \(\ell = 130^{\circ }.07\) and \(b=\) 11\(^{\circ }.6\), with emphasis on the RNO 8 area. The cloud has been observed using the 1.2 m telescope at Mt. Abu Infrared Observatory, in the infrared wavelength band using the Near-Infrared Camera, Spectrograph and Polarimeter instrument. The polarimetric observations were used to map the magnetic field geometry around the region. We combined our measurements with archival data from the 2MASS and WISE surveys. The Gaia EDR3 and DR3 data for the same region were used for distance, proper motion, and other astrophysical information. The analysis of the data reveals areas with ordered polarisation vectors in the region of RNO 8. The position angle measurements reveal polarisation due to dichroic extinction which is consistent with the Galactic magnetic field. The magnetic field strength was calculated for the RNO 8 region using the Chandrashekhar–Fermi method and the value estimated is \(\sim \)42 \(\mu \)G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://nova.astrometry.net.

  2. Part of the wcstools package.

  3. https://about.ifa.hawaii.edu/ukirt/calibration-and-standards/unpolarized-standard-stars/.

  4. http://www.not.iac.es/instruments/turpol/std/hpstd.html.

  5. http://vizier.u-strasbg.fr/

  6. Data downloaded from https://irsa.ipac.caltech.edu/Missions/wise.html.

  7. http://bessel.vlbi-astrometry.org/revised_kd_2014.

References

  • Aarthy E., Rai A., Ganesh S., Vadawale S. V. 2019, Journal of Astronomical Telescopes, Instruments and Systems, 5, 035006

    Article  ADS  Google Scholar 

  • Andersson B. G., Potter S. B. 2007, ApJ, 665, 369

    Article  ADS  Google Scholar 

  • Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Demleitner M., Andrae R. 2021, VizieR Online Data Catalog, I/352

  • Chandrasekhar S., Fermi E. 1953, ApJ, 118, 113

    Article  ADS  Google Scholar 

  • Clemens D. P., Cashman L. R., Cerny C., et al. 2020, ar**v e-prints, 2006.15203

  • Cohen M. 1980, AJ, 85, 29

    Article  ADS  Google Scholar 

  • Cutri R. M., Skrutskie M. F., van Dyk S., et al. 2003, VizieR Online Data Catalog, II/246

  • Dame T. M., Ungerechts H., Cohen R. S., et al. 1987, ApJ, 322, 706

    Article  ADS  Google Scholar 

  • Davis L. J., Greenstein J. L. 1951, ApJ, 114, 206

    Article  ADS  Google Scholar 

  • Eswaraiah C., Lai S.-P., Ma Y., et al. 2019, ApJ, 875, 64

    Article  ADS  Google Scholar 

  • Gaia Collaboration, Prusti T., de Bruijne J. H. J., et al. 2016, A &A, 595, A1

  • Gaia Collaboration, Brown A. G. A., Vallenari A., et al. 2021, A &A, 649, A1

  • Gaia Collaboration 2022, VizieR Online Data Catalog, I/355

  • Gaia Collaboration, Vallenari A., Brown A. G. A., et al. 2022, ar**v e-prints, 2208.00211

  • Ganesh S., Joshi U. C., Baliyan K. S., et al. 2001, BASI, 29, 339

    ADS  Google Scholar 

  • Hatano H., Nishiyama S., Kurita M., et al. 2013, AJ, 145, 105

    Article  ADS  Google Scholar 

  • Jones T. J. 1989, ApJ, 346, 728

    Article  ADS  Google Scholar 

  • Joshi U. C., Kulkarni P. V., Bhatt H. C., Kulshrestha A. K., Deshpande M. R. 1985, MNRAS, 215, 275

    Article  ADS  Google Scholar 

  • Kun M., Obayashi A., Sato F., et al. 1994, A &A, 292, 249

    ADS  Google Scholar 

  • Kun M., Moór A., Szegedi-Elek E., Reipurth B. 2016a, ApJ, 822, 79

    Article  ADS  Google Scholar 

  • Kun M., Wolf-Chase G., Moór A., et al. 2016b, ApJS, 224, 22

    Article  ADS  Google Scholar 

  • Kwon J., Tamura M., Hough J. H., et al. 2016, ApJ, 824, 95

    Article  ADS  Google Scholar 

  • Larionov, G. M., Val’tts, I. E., Winnberg, A., et al. 1999, Astronomy and Astrophysics Supplement Series, 139, 257

    Article  ADS  Google Scholar 

  • Lazarian A. 2007, J. Quant. Spec. Radiat. Transf., 106, 225

    Article  ADS  Google Scholar 

  • Lynds B. T. 1962, ApJS, 7, 1

    Article  ADS  Google Scholar 

  • Myers P. C., Goodman A. A. 1991, ApJ, 373, 509

    Article  ADS  Google Scholar 

  • Ostriker E. C., Stone J. M., Gammie C. F. 2001, ApJ, 546, 980

    Article  ADS  Google Scholar 

  • Reid M. J., Menten K. M., Zheng X. W., et al. 2009, ApJ, 700, 137

    Article  ADS  Google Scholar 

  • Simmons J. F. L., Stewart B. G. 1985, A &A, 142, 100

    ADS  Google Scholar 

  • Stetson P. B. 1987, PASP, 99, 191

    Article  ADS  Google Scholar 

  • Whittet D. C. B. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 343, Astronomical Polarimetry: Current Status and Future Directions, eds Adamson A., Aspin C., Davis C., Fujiyoshi T., p. 321

  • Wilking B. A., Lebofsky M. J., Rieke G. H., Kemp J. C. 1979, AJ, 84, 199

    Article  ADS  Google Scholar 

  • Wright E. L., Eisenhardt P. R. M., Mainzer A. K., et al. 2010, AJ, 140, 1868

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support provided by the observatory and technical staff at Mt. Abu Infrared Observatory (MIRO), PRL during observations. We are grateful to the night operators present at MIRO for their assistance during the observation run. We thank our colleagues in the Astronomy & Astrophysics Division, PRL, for useful discussions and comments. We acknowledge the anonymous referee for all the valuable points which improved the quality of the paper. This work has made use of data from the European Space Agency (ESA) mission Gaia, https://www.cosmos.esa.int/gaia processed by the Gaia Data Processing and Analysis Consortium (DPAC), https://www.cosmos.esa.int/web/gaia/dpac/consortium. Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia multilateral agreement. This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archita Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, A., Ganesh, S. Infrared polarisation study of Lynds 1340: A case of RNO 8. J Astrophys Astron 44, 16 (2023). https://doi.org/10.1007/s12036-022-09905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09905-9

Keywords

Navigation