Log in

The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Not applicable.

References

  1. World Health Organization (2017) Mental health of older adults. https://www.who.int/news-room/fact-sheets/detail/mental-health-of-older-adults. Accessed 22 Dec 2022

  2. Xu L, Zhang W, Liu X, Zhang C, Wang P, Zhao X (2018) Circulatory levels of toxic metals (aluminum, cadmium, mercury, lead) in patients with Alzheimer’s disease: a quantitative meta-analysis and systematic review. J Alzheimers Dis 62(1):361–372. https://doi.org/10.3233/JAD-170811

    Article  CAS  Google Scholar 

  3. Raj K, Kaur P, Gupta GD, Singh S (2021) Metals associated neurodegeneration in Parkinson’s disease: insight to physiological, pathological mechanisms and management. Neurosci Lett 753:135873. https://doi.org/10.1016/j.neulet.2021.135873

    Article  CAS  Google Scholar 

  4. Bocca B, Forte G, Oggiano R, Clemente S, Asara Y, Peruzzu A, Farace C, Pala S et al (2015) Level of neurotoxic metals in amyotrophic lateral sclerosis: a population-based case-control study. J Neurol Sci 359(1–2):11–17. https://doi.org/10.1016/j.jns.2015.10.023

    Article  CAS  Google Scholar 

  5. Cicero CE, Mostile G, Vasta R, Rapisarda V, Signorelli SS, Ferrante M, Zappia M, Nicoletti A (2017) Metals and neurodegenerative diseases. A systematic review. Environ Res 159:82–94. https://doi.org/10.1016/j.envres.2017.07.048

    Article  CAS  Google Scholar 

  6. Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154(2):204–219. https://doi.org/10.1111/imm.12922

    Article  CAS  Google Scholar 

  7. Dales JP, Desplat-Jego S (2020) Metal imbalance in neurodegenerative diseases with a specific concern to the brain of multiple sclerosis patients. Int J Mol Sci 21(23):9105. https://doi.org/10.3390/ijms21239105

    Article  CAS  Google Scholar 

  8. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM (2019) The essential metals for humans: a brief overview. J Inorg Biochem 195:120–129. https://doi.org/10.1016/j.**orgbio.2019.03.013

    Article  CAS  Google Scholar 

  9. Salvador GA, Uranga RM, Giusto NM (2010) Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis 2011:720658. https://doi.org/10.4061/2011/720658

    Article  CAS  Google Scholar 

  10. Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J (2015) The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J Trace Elem Med Biol 31:193–203. https://doi.org/10.1016/j.jtemb.2014.05.007

    Article  CAS  Google Scholar 

  11. Przedborski S, Vila M, Jackson-Lewis V (2003) Neurodegeneration: what is it and where are we? J Clin Invest 111(1):3–10. https://doi.org/10.1172/JCI17522

    Article  CAS  Google Scholar 

  12. Golde TE (2009) The therapeutic importance of understanding mechanisms of neuronal cell death in neurodegenerative disease. Mol Neurodegener 4:8. https://doi.org/10.1186/1750-1326-4-8

    Article  CAS  Google Scholar 

  13. Katsuno M, Sahashi K, Iguchi Y, Hashizume A (2018) Preclinical progression of neurodegenerative diseases. Nagoya J Med Sci 80(3):289–298. https://doi.org/10.18999/nagjms.80.3.289

    Article  CAS  Google Scholar 

  14. Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M (2019) Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci 11:155. https://doi.org/10.3389/fnagi.2019.00155

    Article  CAS  Google Scholar 

  15. Mohd Sairazi NS, Sirajudeen KNS (2020) Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid Based Complement Alternat Med 2020:6565396. https://doi.org/10.1155/2020/6565396

    Article  Google Scholar 

  16. Sharifi-Rad M, Lankatillake C, Dias DA, Docea AO, Mahomoodally MF, Lobine D, Chazot PL, Kurt B et al (2020) Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics. J Clin Med 9(4). https://doi.org/10.3390/jcm9041061

  17. Bjorklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K et al (2022) Natural compounds and products from an anti-aging perspective. Molecules 27(20). https://doi.org/10.3390/molecules27207084

  18. Zahra W, Rai SN, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, Keswani C et al (2020) Neuroprotection of rotenone-induced parkinsonism by ursolic acid in PD mouse model. CNS Neurol Disord Drug Targets 19(7):527–540. https://doi.org/10.2174/1871527319666200812224457

    Article  CAS  Google Scholar 

  19. Rai SN, Zahra W, Singh SS, Birla H, Keswani C, Dilnashin H, Rathore AS, Singh R et al (2019) Anti-inflammatory activity of ursolic acid in MPTP-induced parkinsonian mouse model. Neurotox Res 36(3):452–462. https://doi.org/10.1007/s12640-019-00038-6

    Article  CAS  Google Scholar 

  20. Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Dilnashin H, Singh R, Singh SP (2020) Neuroprotective effect of chlorogenic acid on mitochondrial dysfunction-mediated apoptotic death of DA neurons in a parkinsonian mouse model. Oxid Med Cell Longev 2020:6571484. https://doi.org/10.1155/2020/6571484

    Article  CAS  Google Scholar 

  21. Singh SS, Rai SN, Birla H, Zahra W, Kumar G, Gedda MR, Tiwari N, Patnaik R et al (2018) Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse. Front Pharmacol 9:757. https://doi.org/10.3389/fphar.2018.00757

    Article  CAS  Google Scholar 

  22. Uddin MS, Kabir MT, Niaz K, Jeandet P, Clement C, Mathew B, Rauf A, Rengasamy KRR et al (2020) Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules 25(6):1267. https://doi.org/10.3390/molecules25061267

    Article  CAS  Google Scholar 

  23. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP (2008) The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3(3–4):115–126. https://doi.org/10.1007/s12263-008-0091-4

    Article  CAS  Google Scholar 

  24. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  Google Scholar 

  25. Hussain G, Zhang L, Rasul A, Anwar H, Sohail MU, Razzaq A, Aziz N, Shabbir A et al (2018) Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: an update of recent data. Molecules 23(4):814. https://doi.org/10.3390/molecules23040814

    Article  CAS  Google Scholar 

  26. Choo XY, Alukaidey L, White AR, Grubman A (2013) Neuroinflammation and copper in Alzheimer’s disease. Int J Alzheimers Dis 2013:145345. https://doi.org/10.1155/2013/145345

    Article  CAS  Google Scholar 

  27. Prakash A, Bharti K, Majeed AB (2015) Zinc: indications in brain disorders. Fundam Clin Pharmacol 29(2):131–149. https://doi.org/10.1111/fcp.12110

    Article  CAS  Google Scholar 

  28. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873. https://doi.org/10.1038/nrn1537

    Article  CAS  Google Scholar 

  29. Takeda A (2010) Insight into glutamate excitotoxicity from synaptic zinc homeostasis. Int J Alzheimers Dis 2011:491597. https://doi.org/10.4061/2011/491597

    Article  CAS  Google Scholar 

  30. Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 155(1):30–37. https://doi.org/10.1016/j.jsb.2005.09.004

    Article  CAS  Google Scholar 

  31. Tassone G, Kola A, Valensin D, Pozzi C (2021) Dynamic interplay between copper toxicity and mitochondrial dysfunction in Alzheimer’s disease. Life (Basel) 11(5):386. https://doi.org/10.3390/life11050386

    Article  CAS  Google Scholar 

  32. Morris DR, Levenson CW (2017) Neurotoxicity of zinc. Adv Neurobiol 18:303–312. https://doi.org/10.1007/978-3-319-60189-2_15

    Article  Google Scholar 

  33. Rao SS, Adlard PA (2018) Untangling tau and iron: exploring the interaction between iron and tau in neurodegeneration. Front Mol Neurosci 11:276. https://doi.org/10.3389/fnmol.2018.00276

    Article  CAS  Google Scholar 

  34. Kiouri DP, Tsoupra E, Peana M, Perlepes SP, Stefanidou ME, Chasapis CT (2023) Multifunctional role of zinc in human health: an update. EXCLI J 22:809–827. https://doi.org/10.17179/excli2023-6335

    Article  Google Scholar 

  35. Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME (2020) Recent aspects of the effects of zinc on human health. Arch Toxicol 94(5):1443–1460. https://doi.org/10.1007/s00204-020-02702-9

    Article  CAS  Google Scholar 

  36. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201. https://doi.org/10.1021/pr050361j

    Article  CAS  Google Scholar 

  37. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86(4):521–534. https://doi.org/10.1007/s00204-011-0775-1

    Article  CAS  Google Scholar 

  38. Portbury SD, Adlard PA (2017) Zinc signal in brain diseases. Int J Mol Sci 18(12). https://doi.org/10.3390/ijms18122506

  39. Qi Z, Liu KJ (2019) The interaction of zinc and the blood-brain barrier under physiological and ischemic conditions. Toxicol Appl Pharmacol 364:114–119. https://doi.org/10.1016/j.taap.2018.12.018

    Article  CAS  Google Scholar 

  40. Willekens J, Runnels LW (2022) Impact of zinc transport mechanisms on embryonic and brain development. Nutrients 14(12):2526. https://doi.org/10.3390/nu14122526

    Article  CAS  Google Scholar 

  41. Zhang C, Dischler A, Glover K, Qin Y (2022) Neuronal signalling of zinc: from detection and modulation to function. Open Biol 12(9):220188. https://doi.org/10.1098/rsob.220188

    Article  CAS  Google Scholar 

  42. Choi S, Hong DK, Choi BY, Suh SW (2020) Zinc in the brain: friend or foe? Int J Mol Sci 21(23):8941. https://doi.org/10.3390/ijms21238941

    Article  CAS  Google Scholar 

  43. Rembach A, Hare DJ, Doecke JD, Burnham SC, Volitakis I, Fowler CJ, Cherny RA, McLean C et al (2014) Decreased serum zinc is an effect of ageing and not Alzheimer’s disease. Metallomics 6(7):1216–1219. https://doi.org/10.1039/c4mt00060a

    Article  CAS  Google Scholar 

  44. Idei M, Miyake K, Horiuchi Y, Tabe Y, Miyake N, Ikeda N, Miida T (2010) Serum zinc concentration decreases with age and is associated with anemia in middle-aged and elderly people. Rinsho Byori 58(3):205–210

    CAS  Google Scholar 

  45. Takeda A, Tamano H, Kan F, Itoh H, Oku N (2007) Anxiety-like behavior of young rats after 2-week zinc deprivation. Behav Brain Res 177(1):1–6. https://doi.org/10.1016/j.bbr.2006.11.023

    Article  CAS  Google Scholar 

  46. Takeda A, Hirate M, Tamano H, Oku N (2003) Release of glutamate and GABA in the hippocampus under zinc deficiency. J Neurosci Res 72(4):537–542. https://doi.org/10.1002/jnr.10600

    Article  CAS  Google Scholar 

  47. Çiftci G, Cenesiz S, Ertekin A, Ormancı N, Söğüt MÜ, Tuna E, Cenesiz M (2016) Curcumin abates formaldehyde-induced neurotoxicity via no pathway and the change of minerals (calcium, iron, zinc, copper, magnesium) in brain tissue. J Elem 21:1199–1209. https://doi.org/10.5601/jelem.2015.21.3.1045

    Article  Google Scholar 

  48. Li Z, Liu Y, Wei R, Yong VW, Xue M (2023) The important role of zinc in neurological diseases. Biomolecules 13(1). https://doi.org/10.3390/biom13010028

  49. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75(6):367–390. https://doi.org/10.1016/j.pneurobio.2005.04.005

    Article  CAS  Google Scholar 

  50. Franklin RB, Costello LC (2009) The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem 106(5):750–757. https://doi.org/10.1002/jcb.22049

    Article  CAS  Google Scholar 

  51. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4(3–4):137–169. https://doi.org/10.1006/nbdi.1997.0163

    Article  CAS  Google Scholar 

  52. Chen NN, Zhao DJ, Sun YX, Wang DD, Ni H (2019) Long-term effects of zinc deficiency and zinc supplementation on developmental seizure-induced brain damage and the underlying GPR39/ZnT-3 and MBP expression in the hippocampus. Front Neurosci 13:920. https://doi.org/10.3389/fnins.2019.00920

    Article  Google Scholar 

  53. Pei Y, Zhao D, Huang J, Cao L (1983) Zinc-induced seizures: a new experimental model of epilepsy. Epilepsia 24(2):169–176. https://doi.org/10.1111/j.1528-1157.1983.tb04876.x

    Article  CAS  Google Scholar 

  54. Doboszewska U, Mlyniec K, Wlaz A, Poleszak E, Nowak G, Wlaz P (2019) Zinc signaling and epilepsy. Pharmacol Ther 193:156–177. https://doi.org/10.1016/j.pharmthera.2018.08.013

    Article  CAS  Google Scholar 

  55. Elsas SM, Hazany S, Gregory WL, Mody I (2009) Hippocampal zinc infusion delays the development of afterdischarges and seizures in a kindling model of epilepsy. Epilepsia 50(4):870–879. https://doi.org/10.1111/j.1528-1167.2008.01913.x

    Article  CAS  Google Scholar 

  56. Liu X, **ong X (2018) Copper. In: White WM (ed) Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the Earth. Springer International Publishing, Cham, pp 303–305. https://doi.org/10.1007/978-3-319-39312-4_216

  57. Gromadzka G, Tarnacka B, Flaga A, Adamczyk A (2020) Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int J Mol Sci 21(23). https://doi.org/10.3390/ijms21239259

  58. Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ (2020) Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl Neurodegener 9:10. https://doi.org/10.1186/s40035-020-00189-z

    Article  CAS  Google Scholar 

  59. Nagakubo T, Kumano T, Ohta T, Hashimoto Y, Kobayashi M (2019) Copper amine oxidases catalyze the oxidative deamination and hydrolysis of cyclic imines. Nat Commun 10(1):413. https://doi.org/10.1038/s41467-018-08280-w

    Article  CAS  Google Scholar 

  60. Vashchenko G, MacGillivray RT (2013) Multi-copper oxidases and human iron metabolism. Nutrients 5(7):2289–2313. https://doi.org/10.3390/nu5072289

    Article  CAS  Google Scholar 

  61. Heldin CH, Lu B, Evans R, Gutkind JS (2016) Signals and receptors. Cold Spring Harb Perspect Biol 8(4):a005900. https://doi.org/10.1101/cshperspect.a005900

    Article  Google Scholar 

  62. Gaier ED, Eipper BA, Mains RE (2013) Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 91(1):2–19. https://doi.org/10.1002/jnr.23143

    Article  CAS  Google Scholar 

  63. Allen KJ, Buck NE, Cheah DM, Gazeas S, Bhathal P, Mercer JF (2006) Chronological changes in tissue copper, zinc and iron in the toxic milk mouse and effects of copper loading. Biometals 19(5):555–564. https://doi.org/10.1007/s10534-005-5918-5

    Article  CAS  Google Scholar 

  64. Wazir SM, Ghobrial I (2017) Copper deficiency, a new triad: anemia, leucopenia, and myeloneuropathy. J Community Hosp Intern Med Perspect 7(4):265–268. https://doi.org/10.1080/20009666.2017.1351289

    Article  Google Scholar 

  65. Oe S, Miyagawa K, Honma Y, Harada M (2016) Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease. Exp Cell Res 347(1):192–200. https://doi.org/10.1016/j.yexcr.2016.08.003

    Article  CAS  Google Scholar 

  66. Behl S, Mehta S, Pandey MK (2020) Abnormal levels of metal micronutrients and autism spectrum disorder: a perspective review. Front Mol Neurosci 13:586209. https://doi.org/10.3389/fnmol.2020.586209

    Article  CAS  Google Scholar 

  67. Faber S, Zinn GM, Kern JC 2nd, Kingston HM (2009) The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers 14(3):171–180. https://doi.org/10.1080/13547500902783747

    Article  CAS  Google Scholar 

  68. Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases. Neural Regen Res 7(5):376–385. https://doi.org/10.3969/j.issn.1673-5374.2012.05.009

    Article  CAS  Google Scholar 

  69. Hsu HW, Bondy SC, Kitazawa M (2018) Environmental and dietary exposure to copper and its cellular mechanisms linking to Alzheimer’s disease. Toxicol Sci 163(2):338–345. https://doi.org/10.1093/toxsci/kfy025

    Article  CAS  Google Scholar 

  70. Rossi-George A, Guo CJ, Oakes BL, Gow AJ (2012) Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide. Nitric Oxide 27(4):201–209. https://doi.org/10.1016/j.niox.2012.07.002

    Article  CAS  Google Scholar 

  71. Brewer GJ (2015) Copper-2 ingestion, plus increased meat eating leading to increased copper absorption, are major factors behind the current epidemic of Alzheimer’s disease. Nutrients 7(12):10053–10064. https://doi.org/10.3390/nu7125513

    Article  CAS  Google Scholar 

  72. Fang GC, Wu YS, Huang YL (2011) Measurement and modeling of concentrations of ambient air particles, chromium, copper and lead pollutants concentrations, as well as dry deposition in central Taiwan. J Environ Sci Health A Tox Hazard Subst Environ Eng 46(4):394–407. https://doi.org/10.1080/02773813.2010.542396

    Article  CAS  Google Scholar 

  73. Peana M, Pelucelli A, Medici S, Cappai R, Nurchi VM, Zoroddu MA (2021) Metal toxicity and speciation: a review. Curr Med Chem 28(35):7190–7208. https://doi.org/10.2174/0929867328666210324161205

    Article  CAS  Google Scholar 

  74. Dorsey A, Ingerman L (2004) Toxicological profile for copper.

  75. Block ML, Calderon-Garciduenas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32(9):506–516. https://doi.org/10.1016/j.tins.2009.05.009

    Article  CAS  Google Scholar 

  76. Goch W, Bal W (2017) Numerical simulations reveal randomness of Cu(II) induced abeta peptide dimerization under conditions present in glutamatergic synapses. PLoS ONE 12(1):e0170749. https://doi.org/10.1371/journal.pone.0170749

    Article  CAS  Google Scholar 

  77. Frey PA, Reed GH (2012) The ubiquity of iron. ACS Chem Biol 7(9):1477–1481. https://doi.org/10.1021/cb300323q

    Article  CAS  Google Scholar 

  78. Briguglio M, Hrelia S, Malaguti M, Lombardi G, Riso P, Porrini M, Perazzo P, Banfi G (2020) The central role of iron in human nutrition: from folk to contemporary medicine. Nutrients 12(6). https://doi.org/10.3390/nu12061761

  79. Pivina L, Semenova Y, Dosa MD, Dauletyarova M, Bjorklund G (2019) Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J Mol Neurosci 68(1):1–10. https://doi.org/10.1007/s12031-019-01276-1

    Article  CAS  Google Scholar 

  80. Jauregui-Lobera I (2014) Iron deficiency and cognitive functions. Neuropsychiatr Dis Treat 10:2087–2095. https://doi.org/10.2147/NDT.S72491

    Article  Google Scholar 

  81. Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72(4):267–284. https://doi.org/10.1111/nure.12102

    Article  Google Scholar 

  82. Sanvisens N, Bano MC, Huang M, Puig S (2011) Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell 44(5):759–769. https://doi.org/10.1016/j.molcel.2011.09.021

    Article  CAS  Google Scholar 

  83. Bjorklund G, Dadar M, Peana M, Rahaman MS, Aaseth J (2020) Interactions between iron and manganese in neurotoxicity. Arch Toxicol 94(3):725–734. https://doi.org/10.1007/s00204-020-02652-2

    Article  CAS  Google Scholar 

  84. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716. https://doi.org/10.2165/00002512-200118090-00004

    Article  CAS  Google Scholar 

  85. Halliwell B (2009) The wanderings of a free radical. Free Radic Biol Med 46(5):531–542. https://doi.org/10.1016/j.freeradbiomed.2008.11.008

    Article  CAS  Google Scholar 

  86. Hegde ML, Hegde PM, Holthauzen LM, Hazra TK, Rao KS, Mitra S (2010) Specific inhibition of NEIL-initiated repair of oxidized base damage in human genome by copper and iron: potential etiological linkage to neurodegenerative diseases. J Biol Chem 285(37):28812–28825. https://doi.org/10.1074/jbc.M110.126664

    Article  CAS  Google Scholar 

  87. Gasmi A, Chirumbolo S, Peana M, Mujawdiya PK, Dadar M, Menzel A, Bjorklund G (2021) Biomarkers of senescence during aging as possible warnings to use preventive measures. Curr Med Chem 28(8):1471–1488. https://doi.org/10.2174/0929867327999200917150652

    Article  CAS  Google Scholar 

  88. Wang JY, Zhuang QQ, Zhu LB, Zhu H, Li T, Li R, Chen SF, Huang CP, Zhang X, Zhu JH (2016) Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep 6:36669. https://doi.org/10.1038/srep36669

    Article  CAS  Google Scholar 

  89. Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL (2020) Cysteine toxicity drives age-related mitochondrial decline by altering iron homeostasis. Cell 180(2):296-310 e218. https://doi.org/10.1016/j.cell.2019.12.035

    Article  CAS  Google Scholar 

  90. Wang L, Zhou Q, Chen L, Jiang J (2020) Iron-mediated lysosomal-mitochondrial crosstalk: a new direction in the treatment of aging and aging-related diseases. Acta Biochim Biophys Sin (Shanghai) 52(11):1293–1295. https://doi.org/10.1093/abbs/gmaa115

    Article  Google Scholar 

  91. Zhu WZ, Zhong WD, Wang W, Zhan CJ, Wang CY, Qi JP, Wang JZ, Lei T (2009) Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 253(2):497–504. https://doi.org/10.1148/radiol.2532082324

    Article  Google Scholar 

  92. Sullivan EV, Adalsteinsson E, Rohlfing T, Pfefferbaum A (2009) Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging Behav 3(2):167–175. https://doi.org/10.1007/s11682-008-9059-7

    Article  Google Scholar 

  93. Mills E, Dong XP, Wang F, Xu H (2010) Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med Chem 2(1):51–64. https://doi.org/10.4155/fmc.09.140

    Article  CAS  Google Scholar 

  94. van Duijn S, Bulk M, van Duinen SG, Nabuurs RJA, van Buchem MA, van der Weerd L, Natte R (2017) Cortical iron reflects severity of Alzheimer’s disease. J Alzheimers Dis 60(4):1533–1545. https://doi.org/10.3233/JAD-161143

    Article  CAS  Google Scholar 

  95. Rogers JT, **a N, Wong A, Bakshi R, Cahill CM (2019) Targeting the iron-response elements of the mRNAs for the Alzheimer’s amyloid precursor protein and ferritin to treat acute lead and manganese neurotoxicity. Int J Mol Sci 20(4). https://doi.org/10.3390/ijms20040994

  96. Warmlander S, Osterlund N, Wallin C, Wu J, Luo J, Tiiman A, Jarvet J, Graslund A (2019) Metal binding to the amyloid-beta peptides in the presence of biomembranes: potential mechanisms of cell toxicity. J Biol Inorg Chem 24(8):1189–1196. https://doi.org/10.1007/s00775-019-01723-9

    Article  CAS  Google Scholar 

  97. Casadesus G, Smith MA, Zhu X, Aliev G, Cash AD, Honda K, Petersen RB, Perry G (2004) Alzheimer disease: evidence for a central pathogenic role of iron-mediated reactive oxygen species. J Alzheimers Dis 6(2):165–169. https://doi.org/10.3233/jad-2004-6208

    Article  CAS  Google Scholar 

  98. Kaur D, Andersen J (2004) Does cellular iron dysregulation play a causative role in Parkinson’s disease? Ageing Res Rev 3(3):327–343. https://doi.org/10.1016/j.arr.2004.01.003

    Article  CAS  Google Scholar 

  99. Ke Y, Ming Qian Z (2003) Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol 2(4):246–253. https://doi.org/10.1016/s1474-4422(03)00353-3

    Article  CAS  Google Scholar 

  100. Thomas M, Jankovic J (2004) Neurodegenerative disease and iron storage in the brain. Curr Opin Neurol 17(4):437–442. https://doi.org/10.1097/01.wco.0000137534.61244.d1

    Article  Google Scholar 

  101. Wandt VK, Winkelbeiner N, Bornhorst J, Witt B, Raschke S, Simon L, Ebert F, Kipp AP, Schwerdtle T (2021) A matter of concern - trace element dyshomeostasis and genomic stability in neurons. Redox Biol 41:101877. https://doi.org/10.1016/j.redox.2021.101877

    Article  CAS  Google Scholar 

  102. Mashhadi Akbar Boojar M (2020) An overview of the cellular mechanisms of flavonoids radioprotective effects. Adv Pharm Bull 10(1):13–19. https://doi.org/10.15171/apb.2020.002

    Article  CAS  Google Scholar 

  103. Oliinyk P, Voronenko D, Lysiuk R (2020) Radioprotective properties of polyphenolic compounds of edible and aromatic plants. Food Sci Technol 14(2):62–72. https://doi.org/10.15673/fst.v14i3.1797

    Article  Google Scholar 

  104. Keller RB (2009) Flavonoids: Biosynthesis, biological effects and dietary sources. Nova Science Publishers

  105. Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21(4):539–573. https://doi.org/10.1039/b311404j

    Article  CAS  Google Scholar 

  106. Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plants Res 5:6697–6703

    CAS  Google Scholar 

  107. Brodowska KM (2017) Natural flavonoids: classification, potential role, and application of flavonoid analogues. Eur J Biol Res 7(2):108–123. https://doi.org/10.5281/zenodo.545778

    Article  CAS  Google Scholar 

  108. Chirumbolo S, Bjorklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T (2018) Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int J Mol Sci 19(11). https://doi.org/10.3390/ijms19113568

  109. Gasmi A, Mujawdiya PK, Noor S, Lysiuk R, Darmohray R, Piscopo S, Lenchyk L, Antonyak H et al (2022) Polyphenols in metabolic diseases. Molecules 27(19). https://doi.org/10.3390/molecules27196280

  110. Rees A, Dodd GF, Spencer JPE (2018) The effects of flavonoids on cardiovascular health: a review of human intervention trials and implications for cerebrovascular function. Nutrients 10(12). https://doi.org/10.3390/nu10121852

  111. Suen J, Thomas J, Kranz A, Vun S, Miller M (2016) Effect of flavonoids on oxidative stress and inflammation in adults at risk of cardiovascular disease: a systematic review. Healthcare (Basel) 4(3). https://doi.org/10.3390/healthcare4030069

  112. Lysiuk R, Oliynyk P, Antonyak H, Voronenko D (2020) Development of phyto-antidotes against adverse chemical agents. In: Poisonous plants and phytochemicals in drug discovery. pp 249–268. https://doi.org/10.1002/9781119650034.ch12

  113. Bjorklund G, Dadar M, Chirumbolo S, Lysiuk R (2017) Flavonoids as detoxifying and pro-survival agents: what’s new? Food Chem Toxicol 110:240–250. https://doi.org/10.1016/j.fct.2017.10.039

    Article  CAS  Google Scholar 

  114. Maan G, Sikdar B, Kumar A, Shukla R, Mishra A (2020) Role of flavonoids in neurodegenerative diseases: limitations and future perspectives. Curr Top Med Chem 20(13):1169–1194. https://doi.org/10.2174/1568026620666200416085330

    Article  CAS  Google Scholar 

  115. Maiti S, Nazmeen A, Medda N, Patra R, Ghosh TK (2019) Flavonoids green tea against oxidant stress and inflammation with related human diseases. Clin Nutr Exp 24:1–14. https://doi.org/10.1016/j.yclnex.2018.12.004

    Article  Google Scholar 

  116. Spagnuolo C, Moccia S, Russo GL (2018) Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 153:105–115. https://doi.org/10.1016/j.ejmech.2017.09.001

    Article  CAS  Google Scholar 

  117. An J, Chen B, Kang X, Zhang R, Guo Y, Zhao J, Yang H (2020) Neuroprotective effects of natural compounds on LPS-induced inflammatory responses in microglia. Am J Transl Res 12(6):2353–2378

    CAS  Google Scholar 

  118. Hole KL, Williams RJ (2021) Flavonoids as an intervention for Alzheimer’s disease: progress and hurdles towards defining a mechanism of action. Brain Plast 6(2):167–192. https://doi.org/10.3233/BPL-200098

    Article  Google Scholar 

  119. Neshatdoust S, Saunders C, Castle SM, Vauzour D, Williams C, Butler L, Lovegrove JA, Spencer JP (2016) High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging 4(1):81–93. https://doi.org/10.3233/NHA-1615

    Article  CAS  Google Scholar 

  120. Spencer JP (2007) The interactions of flavonoids within neuronal signalling pathways. Genes Nutr 2(3):257–273. https://doi.org/10.1007/s12263-007-0056-z

    Article  CAS  Google Scholar 

  121. Devi S, Kumar V, Singh SK, Dubey AK, Kim JJ (2021) Flavonoids: potential candidates for the treatment of neurodegenerative disorders. Biomedicines 9(2):99. https://doi.org/10.3390/biomedicines9020099

    Article  CAS  Google Scholar 

  122. Maher P (2019) The potential of flavonoids for the treatment of neurodegenerative diseases. Int J Mol Sci 20(12). https://doi.org/10.3390/ijms20123056

  123. Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A (2012) Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 78(15):1138–1145. https://doi.org/10.1212/WNL.0b013e31824f7fc4

    Article  CAS  Google Scholar 

  124. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65(11):1631–1652. https://doi.org/10.1007/s00018-008-7452-4

    Article  CAS  Google Scholar 

  125. Ahmad RS, Hussain MB, Sultan MT, Arshad MS, Waheed M, Shariati MA, Plygun S, Hashempur MH (2020) Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: a mechanistic review. Evid Based Complement Alternat Med 2020:7656919. https://doi.org/10.1155/2020/7656919

    Article  Google Scholar 

  126. Slika L, Patra D (2020) Traditional uses, therapeutic effects and recent advances of curcumin: a mini-review. Mini Rev Med Chem 20(12):1072–1082. https://doi.org/10.2174/1389557520666200414161316

    Article  CAS  Google Scholar 

  127. Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9(1):161–168. https://doi.org/10.1089/107555303321223035

    Article  Google Scholar 

  128. Spelman K, Burns J, Nichols D, Winters N, Ottersberg S, Tenborg M (2006) Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern Med Rev 11(2):128–150

    Google Scholar 

  129. Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S et al (2020) Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 11:01021. https://doi.org/10.3389/fphar.2020.01021

    Article  CAS  Google Scholar 

  130. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G (2012) Curcumin–from molecule to biological function. Angew Chem Int Ed Engl 51(22):5308–5332. https://doi.org/10.1002/anie.201107724

    Article  CAS  Google Scholar 

  131. Wiggers HJ, Zaioncz S, Cheleski J, Mainardes RM, Khalil NM (2017) Chapter 7 - Curcumin, a multitarget phytochemical: challenges and perspectives. In: Atta ur R (ed) Studies in Natural Products Chemistry, vol 53. Elsevier, pp 243–276. https://doi.org/10.1016/B978-0-444-63930-1.00007-7

  132. Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59. https://doi.org/10.1016/j.biocel.2008.06.010

    Article  CAS  Google Scholar 

  133. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11(4):338–378. https://doi.org/10.2174/1570159X11311040002

    Article  CAS  Google Scholar 

  134. Lachowicz JI, Nurchi VM, Crisponi G, Jaraquemada-PelaezMde G, Ostrowska M, Jezierska J, Gumienna-Kontecka E, Peana M et al (2015) Zinc(II) and copper(II) complexes with hydroxypyrone iron chelators. J Inorg Biochem 151:94–106. https://doi.org/10.1016/j.**orgbio.2015.08.011

    Article  CAS  Google Scholar 

  135. Nurchi VM, Cappai R, Chand K, Chaves S, Gano L, Crisponi G, Peana M, Zoroddu MA et al (2019) New strong extrafunctionalizable tris(3,4-HP) and bis(3,4-HP) metal sequestering agents: synthesis, solution and in vivo metal chelation. Dalton Trans 48(43):16167–16183. https://doi.org/10.1039/c9dt02905b

    Article  CAS  Google Scholar 

  136. Nurchi VM, de Guadalupe J-P, Crisponi G, Lachowicz JI, Cappai R, Gano L, Santos MA, Melchior A et al (2019) A new tripodal kojic acid derivative for iron sequestration: synthesis, protonation, complex formation studies with Fe(3+), Al(3+), Cu(2+) and Zn(2+), and in vivo bioassays. J Inorg Biochem 193:152–165. https://doi.org/10.1016/j.**orgbio.2019.01.012

    Article  CAS  Google Scholar 

  137. Peana M, Medici S, Nurchi VM, Lachowicz JI, Crisponi G, Garribba E, Sanna D, Zoroddu MA (2017) Interaction of a chelating agent, 5-hydroxy-2-(hydroxymethyl)pyridin-4(1H)-one, with Al(III), Cu(II) and Zn(II) ions. J Inorg Biochem 171:18–28. https://doi.org/10.1016/j.**orgbio.2017.03.001

    Article  CAS  Google Scholar 

  138. Crisponi G, Nurchi VM, Lachowicz JI, Crespo-Alonso M, Zoroddu MA, Peana M (2015) Kill or cure: misuse of chelation therapy for human diseases. Coord Chem Rev 284:278–285. https://doi.org/10.1016/j.ccr.2014.04.023

    Article  CAS  Google Scholar 

  139. Popescu BF, Nichol H (2011) Map** brain metals to evaluate therapies for neurodegenerative disease. CNS Neurosci Ther 17(4):256–268. https://doi.org/10.1111/j.1755-5949.2010.00149.x

    Article  CAS  Google Scholar 

  140. Bolognin S, Drago D, Messori L, Zatta P (2009) Chelation therapy for neurodegenerative diseases. Med Res Rev 29(4):547–570. https://doi.org/10.1002/med.20148

    Article  CAS  Google Scholar 

  141. Bjorklund G, Dadar M, Martins N, Chirumbolo S, Goh BH, Smetanina K, Lysiuk R (2018) Brief challenges on medicinal plants: an eye-opening look at ageing-related disorders. Basic Clin Pharmacol Toxicol 122(6):539–558. https://doi.org/10.1111/bcpt.12972

    Article  CAS  Google Scholar 

  142. Winiarska-Mieczan A, Baranowska-Wójcik E, Kwiecień M, Grela ER, Szwajgier D, Kwiatkowska K, Kiczorowska B (2020) The role of dietary antioxidants in the pathogenesis of neurodegenerative diseases and their impact on cerebral oxidoreductive balance. Nutrients 12(2). https://doi.org/10.3390/nu12020435

  143. Jiang Y, Tang X, Deng P, Jiang C, He Y, Hao D, Yang H (2023) The neuroprotective role of fisetin in different neurological diseases: a systematic review. Mol Neurobiol 60(11):6383–6394. https://doi.org/10.1007/s12035-023-03469-7

    Article  CAS  Google Scholar 

  144. Adami R, Bottai D (2022) Curcumin and neurological diseases. Nutr Neurosci 25(3):441–461. https://doi.org/10.1080/1028415X.2020.1760531

    Article  CAS  Google Scholar 

  145. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130(9):2243–2250. https://doi.org/10.1093/jn/130.9.2243

    Article  CAS  Google Scholar 

  146. Munoz VA, Dimarco Palencia FCD, Sancho MI, Miskoski S, Garcia NA, Ferrari GV, Montana MP (2020) Experimental and theoretical study of the stability of the complex fisetin-Cu(II) and a comparative study of free ligand and complex interaction with molecular singlet oxygen. Photochem Photobiol 96(4):815–825. https://doi.org/10.1111/php.13213

    Article  CAS  Google Scholar 

  147. Bhuiya S, Chowdhury S, Haque L, Das S (2018) Spectroscopic, photophysical and theoretical insight into the chelation properties of fisetin with copper (II) in aqueous buffered solutions for calf thymus DNA binding. Int J Biol Macromol 120(Pt A):1156–1169. https://doi.org/10.1016/j.ijbiomac.2018.08.162

    Article  CAS  Google Scholar 

  148. Li J, Zhu J, Wu H, Li W (2022) Synthesis, in vitro, and in silico studies of fisetin and quercetin and their metal complexes as inhibitors of α-glucosidase and thrombin. J Mol Liq 349:118164. https://doi.org/10.1016/j.molliq.2021.118164

    Article  CAS  Google Scholar 

  149. DimitricMarkovic JM, Markovic ZS, Brdaric TP, Filipovic ND (2011) Comparative spectroscopic and mechanistic study of chelation properties of fisetin with iron in aqueous buffered solutions. Implications on in vitro antioxidant activity. Dalton Trans 40(17):4560–4571. https://doi.org/10.1039/c0dt01834a

    Article  CAS  Google Scholar 

  150. Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19(2):151–162. https://doi.org/10.1089/ars.2012.4901

    Article  CAS  Google Scholar 

  151. Maher P (2021) Preventing and treating neurological disorders with the flavonol fisetin. Brain Plast 6(2):155–166. https://doi.org/10.3233/BPL-200104

    Article  Google Scholar 

  152. Maher P (2017) Protective effects of fisetin and other berry flavonoids in Parkinson’s disease. Food Funct 8(9):3033–3042. https://doi.org/10.1039/c7fo00809k

    Article  CAS  Google Scholar 

  153. Alikatte K, Palle S, Rajendra Kumar J, Pathakala N (2021) Fisetin improved rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinson’s disease. J Diet Suppl 18(1):57–71. https://doi.org/10.1080/19390211.2019.1710646

    Article  CAS  Google Scholar 

  154. Wang TH, Wang SY, Wang XD, Jiang HQ, Yang YQ, Wang Y, Cheng JL, Zhang CT et al (2018) Fisetin exerts antioxidant and neuroprotective effects in multiple mutant hSOD1 models of amyotrophic lateral sclerosis by activating ERK. Neuroscience 379:152–166. https://doi.org/10.1016/j.neuroscience.2018.03.008

    Article  CAS  Google Scholar 

  155. Singh S, Singh AK, Garg G, Rizvi SI (2018) Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration. Life Sci 193:171–179. https://doi.org/10.1016/j.lfs.2017.11.004

    Article  CAS  Google Scholar 

  156. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, Ling YY, Melos KI et al (2018) Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36:18–28. https://doi.org/10.1016/j.ebiom.2018.09.015

    Article  Google Scholar 

  157. Maher P (2018) Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: implications for age-related neurodegenerative diseases. Free Radic Biol Med 115:92–104. https://doi.org/10.1016/j.freeradbiomed.2017.11.015

    Article  CAS  Google Scholar 

  158. Maher P (2020) Modulation of the neuroprotective and anti-inflammatory activities of the flavonol fisetin by the transition metals iron and copper. Antioxidants (Basel)9 (11). https://doi.org/10.3390/antiox9111113

  159. Ivanovic M, Makoter K, Islamcevic Razborsek M (2021) Comparative study of chemical composition and antioxidant activity of essential oils and crude extracts of four characteristic Zingiberaceae herbs. Plants (Basel) 10(3). https://doi.org/10.3390/plants10030501

  160. Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19(12):20091–20112. https://doi.org/10.3390/molecules191220091

    Article  CAS  Google Scholar 

  161. He X-G, Lin L-Z, Lian L-Z, Lindenmaier M (1998) Liquid chromatography–electrospray mass spectrometric analysis of curcuminoids and sesquiterpenoids in turmeric (Curcuma longa). J Chromatogr A 818(1):127–132. https://doi.org/10.1016/S0021-9673(98)00540-8

    Article  CAS  Google Scholar 

  162. Priyadarsini KI (2009) Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C 10(2):81–95. https://doi.org/10.1016/j.jphotochemrev.2009.05.001

    Article  CAS  Google Scholar 

  163. Bicer N, Yildiz E, Yegani AA, Aksu F (2018) Synthesis of curcumin complexes with iron(iii) and manganese(ii), and effects of curcumin–iron(iii) on Alzheimer’s disease. New J Chem 42(10):8098–8104. https://doi.org/10.1039/C7NJ04223J

    Article  CAS  Google Scholar 

  164. Barik A, Mishra B, Kunwar A, Kadam RM, Shen L, Dutta S, Padhye S, Satpati AK et al (2007) Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers. Eur J Med Chem 42(4):431–439. https://doi.org/10.1016/j.ejmech.2006.11.012

    Article  CAS  Google Scholar 

  165. Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R (2021) Metal-curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int J Mol Sci 22(13). https://doi.org/10.3390/ijms22137094

  166. Khalil MI, Al-Zahem AM, Al-Qunaibit MH (2013) Synthesis, characterization, Mossbauer parameters, and antitumor activity of Fe(III) curcumin complex. Bioinorg Chem Appl 2013:982423. https://doi.org/10.1155/2013/982423

    Article  CAS  Google Scholar 

  167. Borsari M, Ferrari E, Grandi R, Saladini M (2002) Curcuminoids as potential new iron-chelating agents: spectroscopic, polarographic and potentiometric study on their Fe(III) complexing ability. Inorg Chim Acta 328(1):61–68. https://doi.org/10.1016/S0020-1693(01)00687-9

    Article  CAS  Google Scholar 

  168. Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6(4):367–377. https://doi.org/10.3233/jad-2004-6403

    Article  CAS  Google Scholar 

  169. Liu Y, Nguyen M, Robert A, Meunier B (2019) Metal ions in Alzheimer’s disease: a key role or not? Acc Chem Res 52(7):2026–2035. https://doi.org/10.1021/acs.accounts.9b00248

    Article  CAS  Google Scholar 

  170. Larasati YA, Yoneda-Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato JY (2018) Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci Rep 8(1):2039. https://doi.org/10.1038/s41598-018-20179-6

    Article  CAS  Google Scholar 

  171. Akinyemi AJ, Oboh G, Fadaka AO, Olatunji BP, Akomolafe S (2017) Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats. Neurotoxicology 62:75–79. https://doi.org/10.1016/j.neuro.2017.05.004

    Article  CAS  Google Scholar 

  172. Barik A, Mishra B, Shen L, Mohan H, Kadam RM, Dutta S, Zhang HY, Priyadarsini KI (2005) Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radic Biol Med 39(6):811–822. https://doi.org/10.1016/j.freeradbiomed.2005.05.005

    Article  CAS  Google Scholar 

  173. Yan FS, Sun JL, **e WH, Shen L, Ji HF (2017) Neuroprotective effects and mechanisms of curcumin-Cu(II) and -Zn(II) complexes systems and their pharmacological implications. Nutrients 10(1). https://doi.org/10.3390/nu10010028

  174. Ege D (2021) Action mechanisms of curcumin in Alzheimer’s disease and its brain targeted delivery. Materials (Basel) 14(12). https://doi.org/10.3390/ma14123332

  175. Tang M, Taghibiglou C (2017) The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis 58(4):1003–1016. https://doi.org/10.3233/JAD-170188

    Article  CAS  Google Scholar 

  176. Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, Kuruva CS, Bhatti JS et al (2018) Protective effects of Indian spice curcumin against amyloid-beta in Alzheimer’s disease. J Alzheimers Dis 61(3):843–866. https://doi.org/10.3233/JAD-170512

    Article  CAS  Google Scholar 

  177. Noorafshan A, Ashkani-Esfahani S (2013) A review of therapeutic effects of curcumin. Curr Pharm Des 19(11):2032–2046

    CAS  Google Scholar 

  178. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900

    CAS  Google Scholar 

  179. Gilani AH, Shah AJ, Ghayur MN, Majeed K (2005) Pharmacological basis for the use of turmeric in gastrointestinal and respiratory disorders. Life Sci 76(26):3089–3105. https://doi.org/10.1016/j.lfs.2004.12.021

    Article  CAS  Google Scholar 

  180. Murphy CJ, Tang H, Van Kirk EA, Shen Y, Murdoch WJ (2012) Reproductive effects of a pegylated curcumin. Reprod Toxicol 34(1):120–124. https://doi.org/10.1016/j.reprotox.2012.04.005

    Article  CAS  Google Scholar 

  181. Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 853(1–2):183–189. https://doi.org/10.1016/j.jchromb.2007.03.010

    Article  CAS  Google Scholar 

  182. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46(1):2–18. https://doi.org/10.4143/crt.2014.46.1.2

    Article  CAS  Google Scholar 

  183. Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z, Brenner DE (2008) Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev 17(6):1411–1417. https://doi.org/10.1158/1055-9965.EPI-07-2693

    Article  CAS  Google Scholar 

  184. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y (2013) Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B Biointerfaces 111:367–375. https://doi.org/10.1016/j.colsurfb.2013.06.032

    Article  CAS  Google Scholar 

  185. Pari L, Amali DR (2005) Protective role of tetrahydrocurcumin (THC) an active principle of turmeric on chloroquine induced hepatotoxicity in rats. J Pharm Pharm Sci 8(1):115–123

    CAS  Google Scholar 

  186. Pari L, Murugan P (2004) Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity. Pharmacol Res 49(5):481–486. https://doi.org/10.1016/j.phrs.2003.11.005

    Article  CAS  Google Scholar 

  187. Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL, Howells L, Plummer S et al (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61(3):1058–1064

    CAS  Google Scholar 

  188. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64(4):353–356. https://doi.org/10.1055/s-2006-957450

    Article  CAS  Google Scholar 

  189. Paolino D, Vero A, Cosco D, Pecora TM, Cianciolo S, Fresta M, Pignatello R (2016) Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers. Front Pharmacol 7:485. https://doi.org/10.3389/fphar.2016.00485

    Article  CAS  Google Scholar 

  190. Medeiros FGM, Correia RTP, Dupont S, Beney L, Pedrini MRS (2018) Curcumin and fisetin internalization into Saccharomyces cerevisiae cells via osmoporation: impact of multiple osmotic treatments on the process efficiency. Lett Appl Microbiol 67(4):363–369. https://doi.org/10.1111/lam.13045

    Article  CAS  Google Scholar 

  191. Bi C, Miao XQ, Chow SF, Wu WJ, Yan R, Liao YH, Chow AH, Zheng Y (2017) Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution. Nanomedicine 13(3):943–953. https://doi.org/10.1016/j.nano.2016.11.004

    Article  CAS  Google Scholar 

  192. Duong BH, Truong HN, Phan Nguyen QA, Nguyen Phu TN, Hong Nhan LT (2020) Preparation of curcumin nanosuspension with gum Arabic as a natural stabilizer: process optimization and product characterization. Processes 8(8). https://doi.org/10.3390/pr8080970

  193. Yadav VR, Prasad S, Kannappan R, Ravindran J, Chaturvedi MM, Vaahtera L, Parkkinen J, Aggarwal BB (2010) Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem Pharmacol 80(7):1021–1032. https://doi.org/10.1016/j.bcp.2010.06.022

    Article  CAS  Google Scholar 

  194. Zhang JQ, Jiang KM, An K, Ren SH, **e XG, ** Y, Lin J (2015) Novel water-soluble fisetin/cyclodextrins inclusion complexes: preparation, characterization, molecular docking and bioavailability. Carbohydr Res 418:20–28. https://doi.org/10.1016/j.carres.2015.09.013

    Article  CAS  Google Scholar 

  195. Gupta T, Singh J, Kaur S, Sandhu S, Singh G, Kaur IP (2020) Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): a covenant for its effectiveness. Front Bioeng Biotechnol 8:879. https://doi.org/10.3389/fbioe.2020.00879

    Article  Google Scholar 

  196. Awadeen RH, Boughdady MF, Zaghloul RA, Elsaed WM, Abu H II, Meshali MM (2023) Formulation of lipid polymer hybrid nanoparticles of the phytochemical fisetin and its in vivo assessment against severe acute pancreatitis. Sci Rep 13(1):19110. https://doi.org/10.1038/s41598-023-46215-8

    Article  CAS  Google Scholar 

  197. Rosiak N, Tykarska E, Cielecka-Piontek J (2024) Mechanochemical approach to obtaining a multicomponent fisetin delivery system improving its solubility and biological activity. Int J Mol Sci 25(7). https://doi.org/10.3390/ijms25073648

  198. Mai NNS, Nakai R, Kawano Y, Hanawa T (2020) Enhancing the solubility of curcumin using a solid dispersion system with hydroxypropyl-beta-cyclodextrin prepared by grinding, freeze-drying, and common solvent evaporation methods. Pharmacy (Basel) 8(4). https://doi.org/10.3390/pharmacy8040203

  199. Lund KC, Pantuso T (2014) Combination effects of quercetin, resveratrol and curcumin on in vitro intestinal absorption. In

  200. Boonrueng P, Wasana PWD, Hasriadi VO, Rojsitthisak P, Towiwat P (2022) Combination of curcumin and piperine synergistically improves pain-like behaviors in mouse models of pain with no potential CNS side effects. Chin Med 17(1):119. https://doi.org/10.1186/s13020-022-00660-1

    Article  CAS  Google Scholar 

  201. Karthikeyan A, Senthil N, Min T (2020) Nanocurcumin: a promising candidate for therapeutic applications. Front Pharmacol 11:487. https://doi.org/10.3389/fphar.2020.00487

    Article  CAS  Google Scholar 

  202. Lo Cascio F, Marzullo P, Kayed R, Palumbo Piccionello A (2021) Curcumin as scaffold for drug discovery against neurodegenerative diseases. Biomedicines 9(2). https://doi.org/10.3390/biomedicines9020173

  203. Ross C, Taylor M, Fullwood N, Allsop D (2018) Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 13:8507–8522. https://doi.org/10.2147/IJN.S183117

    Article  CAS  Google Scholar 

  204. Yang R, Zheng Y, Wang Q, Zhao L (2018) Curcumin-loaded chitosan-bovine serum albumin nanoparticles potentially enhanced Abeta 42 phagocytosis and modulated macrophage polarization in Alzheimer’s disease. Nanoscale Res Lett 13(1):330. https://doi.org/10.1186/s11671-018-2759-z

    Article  CAS  Google Scholar 

  205. Giacomeli R, Izoton JC, Dos Santos RB, Boeira SP, Jesse CR, Haas SE (2019) Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by beta-amyloid 1–42 peptide in aged female mice. Brain Res 1721:146325. https://doi.org/10.1016/j.brainres.2019.146325

    Article  CAS  Google Scholar 

  206. Sadegh Malvajerd S, Izadi Z, Azadi A, Kurd M, Derakhshankhah H, Sharifzadeh M, Akbari Javar H, Hamidi M (2019) Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: behavioral and biochemical evidence. J Alzheimers Dis 69(3):671–686. https://doi.org/10.3233/JAD-190083

    Article  CAS  Google Scholar 

  207. Fidelis EM, Savall ASP, da Luz AE, Carvalho F, Teixeira FEG, Haas SE, Bazanella Sampaio T, Pinton S (2019) Curcumin-loaded nanocapsules reverses the depressant-like behavior and oxidative stress induced by beta-amyloid in mice. Neuroscience 423:122–130. https://doi.org/10.1016/j.neuroscience.2019.09.032

    Article  CAS  Google Scholar 

  208. Shabbir U, Rubab M, Tyagi A, Oh DH (2020) Curcumin and its derivatives as theranostic agents in Alzheimer’s disease: the implication of nanotechnology. Int J Mol Sci 22(1). https://doi.org/10.3390/ijms22010196

  209. Szymczak J, Cielecka-Piontek J (2023) Fisetin-in search of better bioavailability-from macro to nano modifications: a review. Int J Mol Sci 24(18). https://doi.org/10.3390/ijms241814158

  210. Khadrawy YA, Hosny EN, Eldein Mohamed HS (2024) Assessment of the neuroprotective effect of green synthesized iron oxide nanoparticles capped with curcumin against a rat model of Parkinson’s disease. Iran J Basic Med Sci 27(1):81–89. https://doi.org/10.22038/IJBMS.2023.73124.15892

    Article  Google Scholar 

  211. Medici S, Peana M, Pelucelli A, Zoroddu MA (2021) An updated overview on metal nanoparticles toxicity. Semin Cancer Biol 76:17–26. https://doi.org/10.1016/j.semcancer.2021.06.020

    Article  CAS  Google Scholar 

  212. Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L (2020) Novel therapeutic delivery of nanocurcumin in central nervous system related disorders. Nanomaterials (Basel) 11(1). https://doi.org/10.3390/nano11010002

  213. Bhawana BRK, Buttar HS, Jain VK, Jain N (2011) Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 59(5):2056–2061. https://doi.org/10.1021/jf104402t

    Article  CAS  Google Scholar 

  214. Hettiarachchi SS, Dunuweera SP, Dunuweera AN, Rajapakse RMG (2021) Synthesis of curcumin nanoparticles from raw turmeric rhizome. ACS Omega 6(12):8246–8252. https://doi.org/10.1021/acsomega.0c06314

    Article  CAS  Google Scholar 

  215. Attaluri S, Arora M, Madhu LN, Kodali M, Shuai B, Melissari L, Upadhya R, Rao X et al (2022) Oral nano-curcumin in a model of chronic gulf war illness alleviates brain dysfunction with modulation of oxidative stress, mitochondrial function, neuroinflammation, neurogenesis, and gene expression. Aging Dis 13(2):583–613. https://doi.org/10.14336/AD.2021.0829

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.B. and M.P. conceived the idea. G.B., P.O., O.K., I.L., R.L., R.D., H.A., N.D., V.Z., O.A., and O.R. edited the manuscript. G.B. and M.P. contributed to the final version of the manuscript. G.B. supervised the project. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Geir Bjørklund or Massimiliano Peana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjørklund, G., Oliinyk, P., Khavrona, O. et al. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04321-2

Keywords

Navigation