Log in

Navβ2 Intracellular Fragments Contribute to Aβ1-42-Induced Cognitive Impairment and Synaptic Deficit Through Transcriptional Suppression of BDNF

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A pathological hallmark of Alzheimer’s disease (AD) is the region-specific accumulation of the amyloid-beta protein (Aβ), which triggers aberrant neuronal excitability, synaptic impairment, and progressive cognitive decline. Previous works have demonstrated that Aβ pathology induced aberrant elevation in the levels and excessive enzymatic hydrolysis of voltage-gated sodium channel type 2 beta subunit (Navβ2) in the brain of AD models, accompanied by alteration in excitability of hippocampal neurons, synaptic deficits, and subsequently, cognitive dysfunction. However, the mechanism is unclear. In this research, by employing cell models treated with toxic Aβ1-42 and AD mice, the possible effects and potential mechanisms induced by Navβ2. The results reveal that Aβ1-42 induces remarkable increases in Navβ2 intracellular domain (Navβ2-ICD) and decreases in both BDNF exons and protein levels, as well as phosphorylated tropomyosin-related kinase B (pTrkB) expression in cells and mice, coupled with cognitive impairments, synaptic deficits, and aberrant neuronal excitability. Administration with exogenous Navβ2-ICD further enhances these effects induced by Aβ1-42, while interfering the generation of Navβ2-ICD and/or complementing BDNF neutralize the Navβ2-ICD-conducted effects. Luciferase reporter assay verifies that Navβ2-ICD regulates BDNF transcription and expression by targeting its promoter. Collectively, our findings partially elucidate that abnormal enzymatic hydrolysis of Navβ2 induced by Aβ1-42-associated AD pathology leads to intracellular Navβ2-ICD overload, which may responsible to abnormal neuronal excitability, synaptic deficit, and cognition dysfunction, through its transcriptional suppression on BDNF. Therefore, this work supplies novel evidences that Navβ2 plays crucial roles in the occurrence and progression of cognitive impairment of AD by transcriptional regulatory activity of its cleaved ICD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 2020 alzheimer's disease facts and figures (2020). Alzheimers Dement. https://doi.org/10.1002/alz.12068

  2. Wright JW, Harding JW (2015) The brain hepatocyte growth factor/c-met receptor system: a new target for the treatment of Alzheimer’s disease. J Alzheimers Dis 45(4):985–1000. https://doi.org/10.3233/jad-142814

    Article  CAS  PubMed  Google Scholar 

  3. Gallaway PJ, Miyake H, Buchowski MS, Shimada M, Yoshitake Y, Kim AS, Hongu N (2017) Physical activity: a viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease, and vascular dementia in older adults. Brain Sci 7 (2).https://doi.org/10.3390/brainsci7020022

  4. Cai Q, Zhao M, Liu X, Wang X, Nie Y, Li P, Liu T, Ge R et al (2017) Reduced expression of citrate synthase leads to excessive superoxide formation and cell apoptosis. Biochem Biophys Res Commun 485(2):388–394. https://doi.org/10.1016/j.bbrc.2017.02.067

    Article  CAS  PubMed  Google Scholar 

  5. Hane FT, Lee BY, Leonenko Z (2017) Recent progress in Alzheimer’s disease research, part 1: pathology. J Alzheimers Dis 57(1):1–28. https://doi.org/10.3233/jad-160882

    Article  PubMed  Google Scholar 

  6. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891. https://doi.org/10.1038/nature02661

    Article  CAS  PubMed  Google Scholar 

  7. Chen C, Bharucha V, Chen Y, Westenbroek RE, Brown A, Malhotra JD, Jones D, Avery C et al (2002) Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel beta 2-subunits. Proc Natl Acad Sci U S A 99(26):17072–17077. https://doi.org/10.1073/pnas.212638099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ito M, Yamakawa K, Sugawara T, Hirose S, Fukuma G, Kaneko S (2006) Phenotypes and genotypes in epilepsy with febrile seizures plus. Epilepsy Res 70(Suppl 1):S199-205. https://doi.org/10.1016/j.eplepsyres.2005.11.028

    Article  CAS  PubMed  Google Scholar 

  9. Lopez-Santiago LF, Pertin M, Morisod X, Chen C, Hong S, Wiley J, Decosterd I, Isom LL (2006) Sodium channel beta2 subunits regulate tetrodotoxin-sensitive sodium channels in small dorsal root ganglion neurons and modulate the response to pain. J Neurosci 26(30):7984–7994. https://doi.org/10.1523/jneurosci.2211-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Malley HA, Shreiner AB, Chen GH, Huffnagle GB, Isom LL (2009) Loss of na+ channel beta2 subunits is neuroprotective in a mouse model of multiple sclerosis. Mol Cell Neurosci 40(2):143–155. https://doi.org/10.1016/j.mcn.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  11. Wong HK, Sakurai T, Oyama F, Kaneko K, Wada K, Miyazaki H, Kurosawa M, De Strooper B et al (2005) Beta subunits of voltage-gated sodium channels are novel substrates of beta-site amyloid precursor protein-cleaving enzyme (bace1) and gamma-secretase. J Biol Chem 280(24):23009–23017. https://doi.org/10.1074/jbc.M414648200

    Article  CAS  PubMed  Google Scholar 

  12. Kim DY, Ingano LA, Carey BW, Pettingell WH, Kovacs DM (2005) Presenilin/gamma-secretase-mediated cleavage of the voltage-gated sodium channel beta2-subunit regulates cell adhesion and migration. J Biol Chem 280(24):23251–23261. https://doi.org/10.1074/jbc.M412938200

    Article  CAS  PubMed  Google Scholar 

  13. **Yang YB, Wang YC, Zhao Y, Ru J, Lu BT, Zhang YN, Wang NC, Hu WY et al (2016) Sodium channel voltage-gated beta 2 plays a vital role in brain aging associated with synaptic plasticity and expression of cox5a and fgf-2. Mol Neurobiol 53(2):955–967. https://doi.org/10.1007/s12035-014-9048-3

    Article  CAS  PubMed  Google Scholar 

  14. Iulita MF, Bistué Millón MB, Pentz R, Aguilar LF, Do Carmo S, Allard S, Michalski B, Wilson EN et al (2017) Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer’s disease. Neurobiol Dis 108:307–323. https://doi.org/10.1016/j.nbd.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  15. Putcha D, Brickhouse M, O’Keefe K, Sullivan C, Rentz D, Marshall G, Dickerson B, Sperling R (2011) Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. J Neurosci 31(48):17680–17688. https://doi.org/10.1523/jneurosci.4740-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. **ao ZC, Ragsdale DS, Malhotra JD, Mattei LN, Braun PE, Schachner M, Isom LL (1999) Tenascin-r is a functional modulator of sodium channel beta subunits. J Biol Chem 274(37):26511–26517. https://doi.org/10.1074/jbc.274.37.26511

    Article  CAS  PubMed  Google Scholar 

  17. Srinivasan J, Schachner M, Catterall WA (1998) Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-c and tenascin-r. Proc Natl Acad Sci U S A 95(26):15753–15757. https://doi.org/10.1073/pnas.95.26.15753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim DY, Carey BW, Wang H, Ingano LA, Binshtok AM, Wertz MH, Pettingell WH, He P et al (2007) Bace1 regulates voltage-gated sodium channels and neuronal activity. Nat Cell Biol 9(7):755–764. https://doi.org/10.1038/ncb1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Malley HA, Isom LL (2015) Sodium channel β subunits: emerging targets in channelopathies. Annu Rev Physiol 77:481–504. https://doi.org/10.1146/annurev-physiol-021014-071846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA (1995) Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a cam motif. Cell 83(3):433–442. https://doi.org/10.1016/0092-8674(95)90121-3

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Yan GJ, Tan YX, Xue LL, Wang TH, Zhao HR, Lu MN, Zhang HX et al (2022) Reduced expression of voltage-gated sodium channel beta 2 restores neuronal injury and improves cognitive dysfunction induced by aβ1-42. Neural Plast 2022:3995227. https://doi.org/10.1155/2022/3995227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khrouf W, Saracino D, Rucheton B, Houot M, Clot F, Rinaldi D, Vitor J, Huynh M et al (2023) Plasma lysosphingolipids in GRN-related diseases: monitoring lysosomal dysfunction to track disease progression. Neurobiol Dis 181:106108. https://doi.org/10.1016/j.nbd.2023.106108

    Article  CAS  PubMed  Google Scholar 

  23. Yu B, Duan J, Ning H, Huang YL, Ling BD, Lin F (2020) Pharmacokinetics and metabolism of ulixertinib in rat by liquid chromatography combined with electrospray ionization tandem mass spectrometry. J Sep Sci 43(7):1275–1283. https://doi.org/10.1002/jssc.201901139

    Article  CAS  PubMed  Google Scholar 

  24. Louis Sam Titus ASC, Sharma D, Kim MS, D’Mello SR (2019) The BDNF and NPAS4 genes are targets of HDAC3-mediated transcriptional repression. BMC Neurosci 20(1):65. https://doi.org/10.1186/s12868-019-0546-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao J, Wang L, Ren X, Dunn JR, Peters A, Miyagi M, Fujioka H, Zhao F et al (2021) Translational regulation in the brain by tdp-43 phase separation. J Cell Biol 220 (10). https://doi.org/10.1083/jcb.202101019

  26. Wang X, Zhang XG, Zhou TT, Li N, Jang CY, **ao ZC, Ma QH, Li S (2016) Elevated neuronal excitability due to modulation of the voltage-gated sodium channel nav1.6 by aβ1–42. Front Neurosci 10:94. https://doi.org/10.3389/fnins.2016.00094

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hu T, **ao Z, Mao R, Chen B, Lu MN, Tong J, Mei R, Li SS et al (2017) Navβ2 knockdown improves cognition in app/ps1 mice by partially inhibiting seizures and app amyloid processing. Oncotarget 8(59):99284–99295. https://doi.org/10.18632/oncotarget.21849

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hu T, Li SS, Lu MN, Zhang L, Chen B, Mao R, Mei R, Tan YX et al (2019) Neuroprotection induced by Navβ2-knockdown in app/ps1 transgenic neurons is associated with nep regulation. Mol Med Rep 20(2):2002–2011. https://doi.org/10.3892/mmr.2019.10406

    Article  CAS  PubMed  Google Scholar 

  29. Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A, Moolman D, Zhang H et al (2006) Ubiquitin hydrolase uch-l1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell 126(4):775–788. https://doi.org/10.1016/j.cell.2006.06.046

    Article  CAS  PubMed  Google Scholar 

  30. Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M (2002) Amyloid beta -peptide inhibition of the pka/creb pathway and long-term potentiation: reversibility by drugs that enhance camp signaling. Proc Natl Acad Sci U S A 99(20):13217–13221. https://doi.org/10.1073/pnas.172504199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to alzheimer’s disease. J Neurosci 21(12):4125–4133. https://doi.org/10.1523/jneurosci.21-12-04125.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang C, Griciuc A, Hudry E, Wan Y, Quinti L, Ward J, Forte AM, Shen X et al (2018) Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis. Sci Rep 8(1):1144. https://doi.org/10.1038/s41598-018-19641-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Corbett BF, Leiser SC, Ling HP, Nagy R, Breysse N, Zhang X, Hazra A, Brown JT et al (2013) Sodium channel cleavage is associated with aberrant neuronal activity and cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci 33(16):7020–7026. https://doi.org/10.1523/jneurosci.2325-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ (2010) Alzheimer’s disease amyloid beta-protein and synaptic function. Neuromolecular Med 12(1):13–26. https://doi.org/10.1007/s12017-009-8091-0

    Article  CAS  PubMed  Google Scholar 

  35. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I et al (1998) Diffusible, nonfibrillar ligands derived from abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453. https://doi.org/10.1073/pnas.95.11.6448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim JH, Anwyl R, Suh YH, Djamgoz MB, Rowan MJ (2001) Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J Neurosci 21(4):1327–1333. https://doi.org/10.1523/jneurosci.21-04-01327.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klyubin I, Walsh DM, Cullen WK, Fadeeva JV, Anwyl R, Selkoe DJ, Rowan MJ (2004) Soluble arctic amyloid beta protein inhibits hippocampal long-term potentiation in vivo. Eur J Neurosci 19(10):2839–2846. https://doi.org/10.1111/j.1460-9568.2004.03389.x

    Article  PubMed  Google Scholar 

  38. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309. https://doi.org/10.1038/nrn1078

    Article  CAS  PubMed  Google Scholar 

  39. Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2(1):24–32. https://doi.org/10.1038/35049004

    Article  CAS  PubMed  Google Scholar 

  40. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (2008) BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 105(7):2711–2716. https://doi.org/10.1073/pnas.0711863105

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91(4):267–270. https://doi.org/10.1254/jphs.91.267

    Article  CAS  PubMed  Google Scholar 

  42. Foltran RB, Diaz SL (2016) BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem 138(2):204–221. https://doi.org/10.1111/jnc.13658

    Article  CAS  PubMed  Google Scholar 

  43. Mizui T, Ishikawa Y, Kumanogoh H, Kojima M (2016) Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: multi-ligand model of growth factor signaling. Pharmacol Res 105:93–98. https://doi.org/10.1016/j.phrs.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  44. Lim JY, Reighard CP, Crowther DC (2015) The pro-domains of neurotrophins, including BDNF, are linked to Alzheimer’s disease through a toxic synergy with Aβ. Hum Mol Genet 24(14):3929–3938. https://doi.org/10.1093/hmg/ddv130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10(3):381–391. https://doi.org/10.1016/s0959-4388(00)00092-1

    Article  CAS  PubMed  Google Scholar 

  46. Wu Y, Wang R, Wang Y, Gao J, Feng L, Yang Z (2019) Distinct impacts of fullerene on cognitive functions of dementia vs. non-dementia mice. Neurotox Res 36(4):736–745. https://doi.org/10.1007/s12640-019-00075-1

    Article  CAS  PubMed  Google Scholar 

  47. Zagrebelsky M, Tacke C, Korte M (2020) BDNF signaling during the lifetime of dendritic spines. Cell Tissue Res 382(1):185–199. https://doi.org/10.1007/s00441-020-03226-5

    Article  PubMed  PubMed Central  Google Scholar 

  48. Leal G, Bramham CR, Duarte CB (2017) BDNF and hippocampal synaptic plasticity. Vitam Horm 104:153–195. https://doi.org/10.1016/bs.vh.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  49. Arancibia S, Silhol M, Moulière F, Meffre J, Höllinger I, Maurice T, Tapia-Arancibia L (2008) Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis 31(3):316–326. https://doi.org/10.1016/j.nbd.2008.05.012

    Article  CAS  PubMed  Google Scholar 

  50. Aliaga E, Silhol M, Bonneau N, Maurice T, Arancibia S, Tapia-Arancibia L (2010) Dual response of BDNF to sublethal concentrations of beta-amyloid peptides in cultured cortical neurons. Neurobiol Dis 37(1):208–217. https://doi.org/10.1016/j.nbd.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  51. Fumagalli F, Racagni G, Riva MA (2006) The expanding role of BDNF: a therapeutic target for Alzheimer’s disease? Pharmacogenomics J 6(1):8–15. https://doi.org/10.1038/sj.tpj.6500337

    Article  CAS  PubMed  Google Scholar 

  52. Poon WW, Blurton-Jones M, Tu CH, Feinberg LM, Chabrier MA, Harris JW, Jeon NL, Cotman CW (2011) β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 32(5):821–833. https://doi.org/10.1016/j.neurobiolaging.2009.05.012

    Article  CAS  PubMed  Google Scholar 

  53. Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10(2):86–98. https://doi.org/10.1101/lm.54603

    Article  PubMed  PubMed Central  Google Scholar 

  54. Garzon D, Yu G, Fahnestock M (2002) A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer’s disease parietal cortex. J Neurochem 82(5):1058–1064. https://doi.org/10.1046/j.1471-4159.2002.01030.x

    Article  CAS  PubMed  Google Scholar 

  55. Allen SJ, Watson JJ, Dawbarn D (2011) The neurotrophins and their role in Alzheimer’s disease. Curr Neuropharmacol 9(4):559–573. https://doi.org/10.2174/157015911798376190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev 33(2–3):199–227. https://doi.org/10.1016/s0165-0173(00)00030-8

    Article  CAS  PubMed  Google Scholar 

  57. Garzon DJ, Fahnestock M (2007) Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts iv and v in differentiated human neuroblastoma cells. J Neurosci 27(10):2628–2635. https://doi.org/10.1523/jneurosci.5053-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ciaramella A, Salani F, Bizzoni F, Orfei MD, Langella R, Angelucci F, Spalletta G, Taddei AR et al (2013) The stimulation of dendritic cells by amyloid beta 1–42 reduces BDNF production in Alzheimer’s disease patients. Brain Behav Immun 32:29–32. https://doi.org/10.1016/j.bbi.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  59. Francis BM, Kim J, Barakat ME, Fraenkl S, Yücel YH, Peng S, Michalski B, Fahnestock M et al (2012) Object recognition memory and BDNF expression are reduced in young TgCRND8 mice. Neurobiol Aging 33(3):555–563. https://doi.org/10.1016/j.neurobiolaging.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  60. Zussy C, Brureau A, Keller E, Marchal S, Blayo C, Delair B, Ixart G, Maurice T et al (2013) Alzheimer’s disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-β peptide injection in rats. PLoS One 8(1):e53117. https://doi.org/10.1371/journal.pone.0053117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726(1–2):49–56

    Article  CAS  PubMed  Google Scholar 

  62. Cao X, Südhof TC (2001) A transcriptionally [correction of transcriptively] active complex of app with fe65 and histone acetyltransferase tip60. Science 293(5527):115–120. https://doi.org/10.1126/science.1058783

    Article  CAS  PubMed  Google Scholar 

  63. Kimberly WT, Zheng JB, Guénette SY, Selkoe DJ (2001) The intracellular domain of the beta-amyloid precursor protein is stabilized by fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 276(43):40288–40292. https://doi.org/10.1074/jbc.C100447200

    Article  CAS  PubMed  Google Scholar 

  64. Belyaev ND, Kellett KA, Beckett C, Makova NZ, Revett TJ, Nalivaeva NN, Hooper NM, Turner AJ (2010) The transcriptionally active amyloid precursor protein (app) intracellular domain is preferentially produced from the 695 isoform of app in a {beta}-secretase-dependent pathway. J Biol Chem 285(53):41443–41454. https://doi.org/10.1074/jbc.M110.141390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shu R, Wong W, Ma QH, Yang ZZ, Zhu H, Liu FJ, Wang P, Ma J et al (2015) App intracellular domain acts as a transcriptional regulator of mir-663 suppressing neuronal differentiation. Cell Death Dis 6(2):e1651. https://doi.org/10.1038/cddis.2015.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 10(1):94–100. https://doi.org/10.1038/embor.2008.222

    Article  CAS  PubMed  Google Scholar 

  67. Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL, Lu B (2012) Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at develo** neuromuscular synapses. Proc Natl Acad Sci U S A 109(39):15924–15829. https://doi.org/10.1073/pnas.1207767109

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vafadari B, Salamian A, Kaczmarek L (2016) MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 139:91–114. https://doi.org/10.1111/jnc.13415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank other members of our laboratories and the funding bodies for their support to this work.

Funding

This work was supported by the Yunnan Fundamental Research Projects (grant no. 202201AT070295), the Special Fund of the Applied Basic Research Programs of Yunnan Province associated with Kunming Medical University in China (grant no. 202101AY070001-005), and National Natural Science Foundation of China (grant numbers 81960210 and 82371468).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: Min-Nan Lu, Dan Wang, Hui-**ang Zhang, Guo-Ji Yan, **ao-Han Dong, and Yan-Bin **yang. Data curation: Min-Nan Lu, Dan Wang, Chen-Jun Ye, **g-Feng Song, **n-Ying Shi, and Tao Hu. Formal analysis and investigation: **ao-Han Dong, Chen-Jun Ye, **g-Feng Song, and Xu-Yang Wang. Methodology: **ao-Han Dong, **n-Ying Shi, Tao Hu, and Shan-Shan Li. Project administration: Yan-Bin **yang. Supervision: Yan-Bin **yang and Min-Nan Lu. Validation and visualization: Dan Wang, Guo-Ji Yan, Chen-Jun Ye, and Yan-Bin **yang. Writing—original draft: Min-Nan Lu, Dan Wang, and Yan-Bin **yang. Writing—review and editing: Yan-Bin **yang and Li-Na Liu. Funding acquisition: Yan-Bin **yang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan-Bin **yang.

Ethics declarations

Ethics Approval

All animal experiments were conducted in compliance with the Guide for the Care and Use of Laboratory Animals published by the US National Institute of Health and the Care and Use of Experimental Animals Guidelines formulated by the Ministry of Medicine of Yunnan, China. The Ethics Committee of Kunming Medical University approved the study protocol (permit no. Kmmu2020240; Kunming, China).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, MN., Wang, D., Ye, CJ. et al. Navβ2 Intracellular Fragments Contribute to Aβ1-42-Induced Cognitive Impairment and Synaptic Deficit Through Transcriptional Suppression of BDNF. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04317-y

Keywords

Navigation