Log in

Peroxynitrite-Triggered Carbon Monoxide Donor Improves Ischemic Stroke Outcome by Inhibiting Neuronal Apoptosis and Ferroptosis

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebral ischemia-reperfusion injury produces excessive reactive oxygen and nitrogen species, including superoxide, nitric oxide, and peroxynitrite (ONOO-). We recently developed a new ONOO--triggered metal-free carbon monoxide donor (PCOD585), exhibiting a notable neuroprotective outcome on the rat middle cerebral artery occlusion model and rendering an exciting intervention opportunity toward ischemia-induced brain injuries. However, its therapeutic mechanism still needs to be addressed. In the pharmacological study, we found PCOD585 inhibited neuronal Bcl2/Bax/caspase-3 apoptosis pathway in the peri-infarcted area of stroke by scavenging ONOO-. ONOO- scavenging further led to decreased Acyl-CoA synthetase long-chain family member 4 and increased glutathione peroxidase 4, to minimize lipoperoxidation. Additionally, the carbon monoxide release upon the ONOO- reaction with PCOD585 further inhibited the neuronal Iron-dependent ferroptosis associated with ischemia-reperfusion. Such a synergistic neuroprotective mechanism of PCOD585 yields as potent a neuroprotective effect as Edaravone. Additionally, PCOD585 penetrates the blood-brain barrier and reduces the degradation of zonula occludens-1 by inhibiting matrix metalloproteinase-9, thereby protecting the integrity of the blood-brain barrier. Our study provides a new perspective for develo** multi-functional compounds to treat ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during this study are available upon reasonable request from the corresponding author.

Abbreviations

ACSL4:

Acyl-CoA synthetase long-chain family member 4

BBB:

Blood-brain barrier

CO:

Carbon monoxide

CORM-3:

Carbon monoxide releasing molecular-3

DMT1:

Divalent metal transporter 1

EDA:

Edaravone

Fer-1:

Ferrostatin-1

Fpn-1:

Ferroportin-1

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GPX4:

Glutathione peroxidase 4

I/R:

Ischemia/reperfusion

MCAO:

Middle Cerebral Artery Occlusion

MMP:

Matrix metalloproteinase

mNSS:

Modified Neurological Severity Scores

OGD/R:

Oxygen and Glucose Deprivation/Reperfusion

PDC:

Peroxynitrite decomposition catalyst

ROS:

Reactive oxygen species

TFR1:

Transferrin receptor 1

TUNEL:

TdT-mediated dUTP Nick-End Labeling

References

  1. Zhang Y, Chen S, Tang W (2017) Two-year outcome after endovascular treatment for stroke. N Engl J Med 376(26):2597

    Article  PubMed  Google Scholar 

  2. Nezu T, Mukai T, Uemura J, Yamashita M, Kitano T, Wada Y et al (2016) Multiple infarcts are associated with long-term stroke recurrence and all-cause mortality in cryptoge nic stroke patients. Stroke 47(9):2209–2215

    Article  PubMed  Google Scholar 

  3. Salinas J, Sprinkhuizen SM, Ackerson T, Bernhardt J, Davie C, George MG et al (2016) An international standard set of patient-centered outcome measures after stroke. Stroke. 47(1):180–186

    Article  PubMed  Google Scholar 

  4. Weisenburger-Lile D, Blanc R, Kyheng M, Desilles JP, Labreuche J, Piotin M et al (2019) Direct admission versus secondary transfer for acute stroke patients treated with intravenous thrombo lysis and thrombectomy: insights from the endovascular treatment in ischemic stroke registry. Cerebrovasc Dis 47(3-4):112–120

    Article  PubMed  Google Scholar 

  5. Chouchani ET, Pell VR, Gaude E, Aksentijevi D, Sundier SY, Robb EL et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 515(7527):431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang XC, **ang JJ, Wu HH, Zhang TY, Zhang DP, Xu QH et al (2019) Neural stem cells transfected with reactive oxygen species-responsive polyplexes for effective treatm ent of ischemic stroke. Adv Mater 31(10):e1807591

    Article  PubMed  Google Scholar 

  7. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morris B (2003) The components of the wired spanning forest are recurrent. Probab Theory Relat Fields 125(2):259–265

    Article  Google Scholar 

  9. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tuo QZ, Lei P, Jackman KA, Li XL, **ong H, Li XL et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22(11):1520–1530

    Article  CAS  PubMed  Google Scholar 

  11. Ji C, Steimle BL, Bailey DK, Kosman DJ (2018) The ferroxidase hephaestin but not amyloid precursor protein is required for ferroportin-supported iron efflux in primary hippocampal neurons. Cell Mol Neurobiol 38(4):941–954

    Article  CAS  PubMed  Google Scholar 

  12. Omori N, Maruyama K, ** G, Li F, Wang SJ, Hamakawa Y et al (2003) Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol Res 25(3):275–279

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y et al (2020) Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke. Front Cell Neurosci 14:577403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakai O, Yasuzawa T, Sumikawa Y, Ueta T, Imai H, Sawabe A et al (2017) Role of GPx4 in human vascular endothelial cells, and the compensatory activity of brown rice on GPx4 ablation condition. Pathophysiology 24(1):9–15

    Article  CAS  PubMed  Google Scholar 

  15. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen LD, Wu RH, Huang YZ, Chen MX, Zeng AM, Zhuo GF et al (2020) The role of ferroptosis in chronic intermittent hypoxia-induced liver injury in rats. Sleep Breath 24(4):1767–1773

    Article  PubMed  Google Scholar 

  17. Yang H, Zhao L, Gao Y, Yao F, Marti TM, Schmid RA et al (2020) Pharmacotranscriptomic analysis reveals novel drugs and gene networks regulating ferroptosis in cancer. Cancers (Basel) 12(11):3273

    Article  CAS  PubMed  Google Scholar 

  18. Wu X, Li Y, Zhang S, Zhou X (2021) Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 11(7):3052–3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E et al (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262–1279.e1225

    Article  CAS  PubMed  Google Scholar 

  20. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1-2):317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. García-Yébenes I, Sobrado M, Moraga A, Zarruk JG, Romera VG, Pradillo JM et al (2012) Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochem Int 61(8):1364–1369

    Article  PubMed  Google Scholar 

  22. Park J, Lee DG, Kim B, Park SJ, Kim JH, Lee SR et al (2015) Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells. Toxicology 337:39–46

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Zhang D, Fu X, Yu L, Lu Z, Gao Y et al (2018) Carbon monoxide-releasing molecule-3 protects against ischemic stroke by suppressing neuroinflammation and alleviating blood-brain barrier disruption. J Neuroinflammation 15(1):188

    Article  PubMed  PubMed Central  Google Scholar 

  24. Basuroy S, Leffler CW, Parfenova H (2013) CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am J Phys Cell Phys 304(11):C1105–C1115

    CAS  Google Scholar 

  25. **ng L, Wang B, Li J, Guo X, Lu X, Chen X et al (2022) A fluorogenic ONOO--triggered carbon monoxide donor for mitigating brain ischemic damage. J Am Chem Soc 144(5):2114–2119

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Liu L, Dong Z, Lu X, Hong W, Liu J et al (2023) An ischemic area-targeting, peroxynitrite-responsive, biomimetic carbon monoxide nanogenerator for preventing myocardial ischemia-reperfusion injury. Bioact Mater 28:480–494

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Parween S, Alawathugoda TT, Prabakaran AD, Dheen ST, Morse RH, Emerald BS et al (2022) Nutrient sensitive protein O-GlcNAcylation modulates the transcriptome through epigenetic mechanisms during embryonic neurogenesis. Life Sci Alliance 5(8):e202201385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen H, Guan B, Chen X, Chen X, Li C, Qiu J et al (2018) Baicalin attenuates blood-brain barrier disruption and hemorrhagic transformation and improves neurol ogical outcome in ischemic stroke rats with delayed t-PA treatment: involvement of ONOO--MMP-9 pathway. Transl Stroke Res 9(5):515–529

    Article  PubMed  Google Scholar 

  29. Liu Y, Xue X, Zhang H, Che X, Luo J, Wang P et al (2019) Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy 15(3):493–509

    Article  PubMed  Google Scholar 

  30. Michel BW, Lippert AR, Chang CJ (2012) A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation. J Am Chem Soc 134(38):15668–15671

    Article  CAS  PubMed  Google Scholar 

  31. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    Article  CAS  PubMed  Google Scholar 

  32. Naito MG, Xu D, Amin P, Lee J, Wang H, Li W et al (2020) Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. P Natl Acad Sci USA 117(9):4959–4970

    Article  CAS  Google Scholar 

  33. Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A et al (2020) Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol 28:101328

    Article  CAS  PubMed  Google Scholar 

  34. Celi LA, Citi L, Ghassemi M, Pollard TJ (2019) The plos one collection on machine learning in health and biomedicine: towards open code and open data. PLoS One 14(1):e0210232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Halm M (2019) The influence of appropriate staffing and healthy work environments on patient and nurse outcomes. Am J Crit Care 28(2):152–156

    Article  PubMed  Google Scholar 

  36. Kuo YC, Chen HH (2006) Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on th e permeability of zidovudine and lamivudine across the in vitro blood-brain barrier. Int J Pharm 327(1-2):160–169

    Article  CAS  PubMed  Google Scholar 

  37. Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M et al (2019) Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 25(2):270–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    Article  CAS  PubMed  Google Scholar 

  39. Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J et al (2021) Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol 12:661955

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ding R, Feng L, He L, Chen Y, Wen P, Fu Z et al (2015) Peroxynitrite decomposition catalyst prevents matrix metalloproteinase-9 activation and neurovascular injury after hemoglobin injection into the caudate nucleus of rats. Neuroscience. 297:182–193

    Article  CAS  PubMed  Google Scholar 

  41. Basuroy S, Leffler CW, Parfenova H (2013) CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am J Physiol-Cell Ph 304(11):C1105–C1115

    Article  CAS  Google Scholar 

  42. Mao R, Zong N, Hu Y, Chen Y, Xu Y (2022) Neuronal death mechanisms and therapeutic strategy in ischemic stroke. Neurosci Bull 38(10):1229–1247

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis. 14(4):469–477

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kang YP, Mockabee-Macias A, Jiang C, Falzone A, Prieto-Farigua N, Stone E et al (2021) Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab 33(1):174–189.e177

    Article  CAS  PubMed  Google Scholar 

  45. Hoy AJ, Nagarajan SR, Butler LM (2021) Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer 21(12):753–766

    Article  CAS  PubMed  Google Scholar 

  46. Strzyz P (2020) Iron expulsion by exosomes drives ferroptosis resistance. Nat Rev Mol Cell Biol 21(1):4–5

    Article  CAS  PubMed  Google Scholar 

  47. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593(7860):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jang S, Chapa-Dubocq XR, Tyurina YY, St Croix CM, Kapralov AA, Tyurin VA et al (2021) Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Redox Biol 45:102021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gill D, Monori G, Tzoulaki I, Dehghan A (2018) Iron status and risk of stroke. Stroke 49(12):2815–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaluza J, Wolk A, Larsson SC (2013) Heme iron intake and risk of stroke: a prospective study of men. Stroke 44(2):334–339

    Article  CAS  PubMed  Google Scholar 

  51. García-Yébenes I, García-Culebras A, Peña-Martínez C, Fernández-López D, Díaz-Guzmán J, Negredo P et al (2018) Iron overload exacerbates the risk of hemorrhagic transformation after tPA (tissue-type plasminogen activator) administration in thromboembolic stroke mice. Stroke. 49(9):2163–2172

    Article  PubMed  Google Scholar 

  52. Kawabata H (2019) Transferrin and transferrin receptors update. Free Radical Bio Med 133:46–54

    Article  CAS  Google Scholar 

  53. Yanatori I, Kishi F (2019) DMT1 and iron transport. Free Radical Bio Med 133:55–63

    Article  CAS  Google Scholar 

  54. Rishi G, Wallace DF, Subramaniam VN (2015) Hepcidin: regulation of the master iron regulator. Biosci Rep 35(3):e00192

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rishi G, Secondes ES, Wallace DF, Subramaniam VN (2020) Evidence for dimerization of ferroportin in a human hepatic cell line using proximity ligation assays. Biosci Rep 40(5):BSR20191499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi J, Yu W, Xu L, Yin N, Liu W, Zhang K et al (2020) Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxy gen regulating. Nano Lett 20(1):780–789

    Article  CAS  PubMed  Google Scholar 

  57. Ren JX, Li C, Yan XL, Qu Y, Yang Y, Guo ZN (2021) Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: possible targets and molecular mechanisms. Oxidative Med Cell Longev 2021:6643382

    Article  Google Scholar 

  58. Cheng J, Fan YQ, Liu BH, Zhou H, Wang JM, Chen QX (2020) ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol Rep 43(1):147–158

    CAS  PubMed  Google Scholar 

  59. Chen J, Yang L, Geng L, He J, Chen L, Sun Q et al (2021) Inhibition of acyl-coa synthetase long-chain family member 4 facilitates neurological recovery after stroke by regulation ferroptosis. Front Cell Neurosci 15:632354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo J, Cheng M, Liu P, Cao D, Luo J, Wan Y et al (2022) A multi-target directed ligands strategy for the treatment of Alzheimer's disease: dimethyl fumarate plus tranilast modified dithiocarbate as AChE inhibitor and Nrf2 activator. Eur J Med Chem 242:114630

    Article  CAS  PubMed  Google Scholar 

  61. Pereira de Ávila MA, Giusti-Paiva A, Giovani de Oliveira Nascimento C (2014) The peripheral antinociceptive effect induced by the heme oxygenase/carbon monoxide pathway is associated with ATP-sensitive K+ channels. Eur J Pharmacol 726:41–48

    Article  PubMed  Google Scholar 

  62. Zhang LM, Zhang DX, Zheng WC, Hu JS, Fu L, Li Y et al (2021) CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions. Exp Neurol 341:113683

    Article  CAS  PubMed  Google Scholar 

  63. Soni HM, Jain MR, Mehta AA (2012) Mechanism(s) involved in carbon monoxide-releasing Molecule-2-mediated cardioprotection during ischaemia-reperfusion injury in isolated rat heart. Indian J Pharm Sci 74(4):281–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu K, Wu WJ, Zhang C, Zhu YL, Zhong JQ, Li J (2020) CORM-3 regulates microglia activity, prevents neuronal injury, and improves memory function during radiation-induced brain injury. Curr Neurovasc Res 17(4):464–470

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Fuxing Dong from the Public Experimental Research Center for his enthusiastic help in the experiment of laser scanning confocal microscopy.

Funding

This work was supported by Grants of Natural Science Foundation of Jiangsu Province, China (No. BK20211348), Xuzhou Basic Research Program (KC21030), Leadership program through open competition in Xuzhou Medical University (JBGS202203), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX21_2722).

Author information

Authors and Affiliations

Authors

Contributions

XJG, LYH and SHQ. conceived and designed the research. XJG, LYH and STG contributed equally to this work with the help of ML, WW, JC and YDZ, XG and XL performed immunofluorescence experiments. XC, LL, and YY provided technical assistance with the biological and chemical knowledge. LYH and XJG wrote the manuscript with help from XL All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to **ao Luo or Su-Hua Qi.

Ethics declarations

Ethics Approval

The animal experiment was conducted by the national and institutional guidelines on ethics and biosafety, and the protocol was approved by the Institutional Animal Care and Use Committee of Xuzhou Medical University (License ID: 201907W079).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Figure S1. Representative images of Rhodamine B and CO production in different organs from the MCAO rats treated with PCOD585. The cryosections were prepared from the rats subjected to 2 h ischemia and followed with 6 mg/kg PCOD585 intravenous transfusion. The fluorescent images were captured by invert fluorescent microscopy. Rhodamine B (red), CO (Cop-1 probe, green), DAPI (blue). Scale bar: 200 μm. Figure S2. The expression and analysis of GPX4 (green) in caudate putamen from the rats with MCAO, PDC and PCOD585. PDC: MCAO+PDC, PCOD585: MCAO+PCOD585. The data were obtained from three individual experiments. For each experiment, five fluorescent fields were selected. **P < 0. 01, ***P < 0.001. Scale bar: 200 μm. Figure S3. The effect of different reoxygenation times on the expression of GPX4 in OGD-treated HT22 cells. The data were obtained from three individual experiments. *P < 0. 05, **P < 0.01. Figure S4. The effect of PCOD585 with a different concentration on the expression of GPX4 in OGD/R-treated HT22 cells. PCOD585 were added along with reoxygenation. The data were obtained from three individual experiments. *P < 0. 05 (DOCX 1615 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, XJ., Huang, LY., Gong, ST. et al. Peroxynitrite-Triggered Carbon Monoxide Donor Improves Ischemic Stroke Outcome by Inhibiting Neuronal Apoptosis and Ferroptosis. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04238-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04238-w

Keywords

Navigation