Log in

Activation of Inflammasomes and Relevant Modulators for the Treatment of Microglia-mediated Neuroinflammation in Ischemic Stroke

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

As the brain’s resident immune patrol, microglia mediate endogenous immune responses to central nervous system injury in ischemic stroke, thereby eliciting either neuroprotective or neurotoxic effects. The association of microglia-mediated neuroinflammation with the progression of ischemic stroke is evident through diverse signaling pathways, notably involving inflammasomes. Within microglia, inflammasomes play a pivotal role in promoting the maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), facilitating pyroptosis, and triggering immune infiltration, ultimately leading to neuronal cell dysfunction. Addressing the persistent and widespread inflammation holds promise as a breakthrough in enhancing the treatment of ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Eldahshan W, Fagan SC, Ergul A (2019) Inflammation within the neurovascular unit: focus on microglia for stroke injury and recovery. Pharmacol Res 147:104349

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  3. Y. Wang, W. Liu, P. Geng, W. Du, C. Guo, Q. Wang, G.Q. Zheng, X. **, Role of crosstalk between glial cells and immune cells in blood-brain barrier damage and protection after acute ischemic stroke, Aging Dis (2023)

  4. Schadlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B (2023) The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 45(3):347–365

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lochhead JJ, Ronaldson PT, Davis TP (2024) The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: antioxidants in clinical trials. Biochem Pharmacol 30:116186

    Article  Google Scholar 

  6. Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, Shimada T, Mizuno Y, Urabe T (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117(3):531–539

    Article  CAS  PubMed  Google Scholar 

  7. Gronberg NV, Johansen FF, Kristiansen U, Hasseldam H (2013) Leukocyte infiltration in experimental stroke. J Neuroinflammation 10:115

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhong CK, Wang GL, Xu T, Zhu ZB, Guo DX, Zheng XW, Wang AL, Bu XQ, Peng H, Chen J, Xu T, Peng YB, Li QW, Ju Z, Geng DQ, He J, Zhang YH (2019) Tissue inhibitor metalloproteinase-1 and clinical outcomes after acute ischemic stroke. Neurology 93(18):E1675–E1685

    Article  CAS  PubMed  Google Scholar 

  9. Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F (2017) Regulation of microglial activation in stroke. Acta Pharmacol Sin 38(4):445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang L, Hauenstein AV (2020) The NLRP3 inflammasome: mechanism of action, role in disease and therapies. Mol Aspects Med 76:100889

    Article  CAS  PubMed  Google Scholar 

  11. Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013) Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12(4):941–966

    Article  CAS  PubMed  Google Scholar 

  12. Abulafia DP, Vaccari JPD, Lozano JD, Lotocki G, Keane RW, Dietrich WD (2009) Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cerebr Blood F Met 29(3):534–544

    Article  CAS  Google Scholar 

  13. Mitchell PS, Sandstrom A, Vance RE (2019) The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol 60:37–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson KS, Teo DET, Tan KS, Toh GA, Ong HH, Lim CK, Lay K, Au BV, Lew TS, Chu JJH, Chow VTK, Wang DY, Zhong FL, Reversade B (2020) Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science 370(6521):eaay2002

    Article  CAS  PubMed  Google Scholar 

  15. Huang MH, Zhang XX, Toh GA, Gong Q, Wang J, Han ZF, Wu B, Zhong F, Chai JJ (2021) Structural and biochemical mechanisms of NLRP1 inhibition by DPP9. Nature 592(7856):773–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hollingsworth LR, Sharif H, Griswold AR, Fontana P, Mintseris J, Dagbay KB, Paulo JA, Gygi SP, Bachovchin DA, Wu H (2021) DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation. Nature 592(7856):778–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tupik JD, Nagai-Singer MA, Allen IC (2020) To protect or adversely affect? The dichotomous role of the NLRP1 inflammasome in human disease. Mol Aspects Med 76:100858

    Article  CAS  PubMed  Google Scholar 

  18. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25(5):713–724

    Article  CAS  PubMed  Google Scholar 

  19. Ball DP, Taabazuing CY, Griswold AR, Orth EL, Rao SD, Kotliar IB, Vostal LE, Johnson DC, Bachovchin DA (2020) Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci Alliance 3(3):e202000664

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang LF, Sharif H, Vora SM, Zheng YM, Wu H (2021) Structures and functions of the inflammasome engine. J Allergy Clin Immun 147(6):2021–2029

    Article  CAS  PubMed  Google Scholar 

  21. Arik E, Heinisch O, Bienert M, Gubeljak L, Slowik A, Reich A, Schulz JB, Wilhelm T, Huber M, Habib P (2022) Erythropoietin enhances post-ischemic migration and phagocytosis and alleviates the activation of inflammasomes in human microglial cells. Front Cell Neurosci 16:915348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hochheiser IV, Pilsl M, Hagelueken G, Moecking J, Marleaux M, Brinkschulte R, Latz E, Engel C, Geyer M (2022) Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature 604(7904):184–189

    Article  CAS  PubMed  Google Scholar 

  23. Andreeva L, David L, Rawson S, Shen C, Pasricha T, Pelegrin P, Wu H (2021) NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184(26):6299–6312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hafner-Bratkovic I, Susjan P, Lainscek D, Tapia-Abellán A, Cerovic K, Kadunc L, Angosto-Bazarra D, Pelegrín P, Jerala R (2018) NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat Commun 9:5182

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu JF, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–146

    Article  CAS  PubMed  Google Scholar 

  26. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, Robertson AAB, Cooper MA, Graf T, Hornung V (2016) Human monocytes engage an alternative inflammasome pathway. Immunity 44(4):833–846

    Article  CAS  PubMed  Google Scholar 

  27. Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, Akira S (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14(5):454–460

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Chen ZJ (2018) PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564(7734):71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li X, Thome S, Ma XD, Amrute-Nayak M, Finigan A, Kitt L, Masters L, James JR, Shi YG, Meng GY, Mallat Z (2017) MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nat Commun 8:15986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Broz P, Pelegrín P, Shao F (2020) The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol 20(3):143–157

    Article  CAS  PubMed  Google Scholar 

  31. Hu J, Zeng C, Wei J, Duan F, Liu S, Zhao Y, Tan H (2020) The combination of Panax ginseng and Angelica sinensis alleviates ischemia brain injury by suppressing NLRP3 inflammasome activation and microglial pyroptosis. Phytomedicine 76:153251

    Article  CAS  PubMed  Google Scholar 

  32. Ge YY, Wang L, Wang CC, Chen JY, Dai MS, Yao SL, Lin Y (2022) CX3CL1 inhibits NLRP3 inflammasome-induced microglial pyroptosis and improves neuronal function in mice with experimentally-induced ischemic stroke. Life Sci 300:120564

    Article  CAS  PubMed  Google Scholar 

  33. Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, **ong X, Gu L (2021) Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation 18(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Franke M, Bieber M, Kraft P, Weber ANR, Stoll G, Schuhmann MK (2021) The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun 92:221–231

    Article  CAS  Google Scholar 

  35. Lemarchand E, Barrington J, Chenery A, Haley M, Coutts G, Allen JE, Allan SM, Brough D (2019) Extent of ischemic brain injury after thrombotic stroke is independent of the NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome. Stroke 50(5):1232–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heinisch O, Zeyen T, Goldmann T, Prinz M, Huber M, Jung JNF, Arik E, Habib S, Slowik A, Reich A, Schulz JB, Habib P (2022) Erythropoietin abrogates post-ischemic activation of the NLRP3, NLRC4, and AIM2 inflammasomes in microglia/macrophages in a TAK1-dependent manner. Transl Stroke Res 13:462

    Article  CAS  PubMed  Google Scholar 

  37. Hu ZH, Yan CY, Liu PY, Huang ZW, Ma R, Zhang CL, Wang RY, Zhang YT, Martinon F, Miao D, Deng HT, Wang JW, Chang JB, Chai JJ (2013) Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341(6142):172–175

    Article  CAS  PubMed  Google Scholar 

  38. Zhang LM, Chen SB, Ruan JB, Wu JY, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, Marks C, Ouyang Q, Zhang XZ, Mao YD, Wu H (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350(6259):404–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu ZH, Zhou Q, Zhang CL, Fan SL, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai JJ (2015) Structural and biochemical basis for induced self-propagation of NLRC4. Science 350(6259):399–404

    Article  CAS  PubMed  Google Scholar 

  40. Tenthorey JL, Haloupek N, López-Blanco JR, Grob P, Adamson E, Hartenian E, Lind NA, Bourgeois NM, Chacón P, Nogales E, Vance RE (2017) The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science 358(6365):888–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang XR, Yang F, Wang WG, Lin GZ, Hu ZH, Han ZF, Qi YJ, Zhang LM, Wang JW, Sui SF, Chai JJ (2018) Structural basis for specific flagellin recognition by the NLR protein NAIP5. Cell Res 28(1):35–47

    Article  CAS  PubMed  Google Scholar 

  42. Yang JL, Zhao Y, Shi JJ, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. P Natl Acad Sci USA 110(35):14408–14413

    Article  CAS  Google Scholar 

  43. Barnett KC, Liang KX, Ting JPY (2021) Move over NAIP, DDX17 diversifies the NLRC4 inflammasome. Sci Immunol 6(66):eabm1201

    Article  CAS  PubMed  Google Scholar 

  44. Wang SB, Narendran S, Hirahara S, Varshney A, Pereira F, Apicella I, Ambati M, Ambati VL, Yerramothu P, Ambati K, Nagasaka Y, Argyle D, Huang PR, Baker KL, Marion KM, Gupta K, Liu B, Hinton DR, Canna SW, Sallam T, Sada SR, Kerur N, Gelgfand BD, Ambati J (2021) DDX17 is an essential mediator of sterile NLRC4 inflammasome activation by retrotransposon RNAs. Sci Immunol 6(66):eabi4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guan CY, Huang X, Yue JN, **ang HR, Shaheen S, Jiang ZY, Tao YX, Tu J, Liu ZS, Yao YF, Yang W, Hou ZY, Liu JL, Yang XD, Zou Q, Su B, Liu ZD, Ni J, Cheng JK, Wu XF (2021) SIRT3-mediated deacetylation of NLRC4 promotes inflammasome activation. Theranostics 11(8):3981–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, Gilmour LL, Lamkanfi M, Louie S, Kayagaki N, Liu JF, Kömüves L, Cupp JE, Arnott D, Monack D, Dixit VM (2012) Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490(7421):539–542

    Article  CAS  PubMed  Google Scholar 

  47. Tenthorey JL, Chavez RA, Thompson TW, Deets KA, Vance RE, Rauch I (2020) NLRC4 inflammasome activation is NLRP3-and phosphorylation-independent during infection and does not protect from melanoma. J Exp Med 217(7)

  48. Freeman L, Guo HT, David CN, Brickey WJ, Jha S, Ting JPY (2017) NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 214(5):1351–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poh L, Kang SW, Baik SH, Ng GYQ, She DT, Balaganapathy P, Dheen ST, Magnus T, Gelderblom M, Sobey CG, Koo EH, Fann DY, Arumugam TV (2019) Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun 75:34–47

    Article  CAS  PubMed  Google Scholar 

  50. Wang B, Bhattacharya M, Roy S, Tian Y, Yin Q (2020) Immunobiology and structural biology of AIM2 inflammasome. Mol Aspects Med 76:100869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. ** TC, Perry A, Jiang JS, Smith P, Curry JA, Unterholzner L, Jiang ZZ, Horvath G, Rathinam VA, Johnstone RW, Hornung V, Latz E, Bowie AG, Fitzgerald KA, **ao TS (2012) Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36(4):561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fernandes-Alnemri T, Yu JW, Datta P, Wu JH, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim H, Seo JS, Lee SY, Ha KT, Choi BT, Shin YI, Yun YJ, Shin HK (2020) AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain Behav Immun 87:765–776

    Article  CAS  PubMed  Google Scholar 

  54. Zhang MJ, Zhao QC, **a MX, Chen J, Chen YT, Cao X, Liu Y, Yuan ZQ, Wang XY, Xu Y (2020) The HDAC3 inhibitor RGFP966 ameliorated ischemic brain damage by downregulating the AIM2 inflammasome. Faseb J 34(1):648–662

    Article  CAS  PubMed  Google Scholar 

  55. Xu SY, Bian HJ, Shu S, **a SN, Gu Y, Zhang MJ, Xu Y, Cao X (2021) AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. Cns Neurosci Ther 27(10):1224–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burberi F, Bruscoli M (2011) Intravenous thrombolytic therapy for acute ischemic stroke. N Engl J Med 365(10):965

    CAS  PubMed  Google Scholar 

  57. Lapchak PA (2010) A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmaco 11(10):1753–1763

    Article  CAS  Google Scholar 

  58. Steenholdt C, Jensen JT, Brynskov J, Moller AM, Limschou AC, Konge L, Vilmann P (2022) Patient satisfaction of propofol versus midazolam and fentanyl sedation during colonoscopy in inflammatory bowel disease. Clin Gastroenterol H 20(3):559–568

    Article  CAS  Google Scholar 

  59. Ma Z, Li K, Chen P, Pan J, Li X, Zhao G (2020) Propofol attenuates inflammatory damage via inhibiting NLRP1-Casp1-Casp6 signaling in ischemic brain injury. Biol Pharm Bull 43(10):1481–1489

    Article  CAS  PubMed  Google Scholar 

  60. Huang LF, Li X, Liu YJ, Liang XL, Ye H, Yang C, Hua L, Zhang X (2021) Curcumin alleviates cerebral ischemia-reperfusion injury by inhibiting NLRP1-dependent neuronal pyroptosis. Curr Neurovasc Res 18(2):189–196

    Article  CAS  PubMed  Google Scholar 

  61. Bavarsad K, Barreto GE, Hadjzadeh MAR, Sahebkar A (2019) Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol Neurobiol 56(2):1391–1404

    Article  CAS  PubMed  Google Scholar 

  62. Habib P, Stamm AS, Schulz JB, Reich A, Slowik A, Capellmann S, Huber M, Wilhelm T (2019) EPO and TMBIM3/GRINA promote the activation of the adaptive arm and counteract the terminal arm of the unfolded protein response after murine transient cerebral ischemia. Int J Mol Sci 20(21):5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang J, Lu WT, Doycheva DM, Gamdzyk M, Hu X, Liu R, Zhang JH, Tang JP (2020) IRE1α inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model. J Neuroinflamm 17(1):1–5

    Article  Google Scholar 

  64. Thom V, Arumugam TV, Magnus T, Gelderblom M (2017) Therapeutic potential of intravenous immunoglobulin in acute brain injury. Front Immunol 8:875

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fann DYW, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P, Bernreuther C, Glatzel M, Cheng YL, Thundyil J, Widiapradja A, Lok KZ, Foo SL, Wang YC, Li YI, Drummond GR, Basta M, Magnus T, Jo DG, Mattson MP, Sobey CG, Arumugam TV (2013) Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis 4:e790

    Article  CAS  PubMed  Google Scholar 

  66. Li CH, Wang J, Fang YQ, Liu Y, Chen T, Sun H, Zhou XF, Liao H (2016) Nafamostat mesilate improves function recovery after stroke by inhibiting neuroinflammation in rats. Brain Behav Immun 56:230–245

    Article  CAS  PubMed  Google Scholar 

  67. Qiu J, Wang M, Zhang J, Cai Q, Lu D, Li YS, Dong YS, Zhao TZ, Chen HS (2016) The neuroprotection of sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling. Int Immunopharmacol 40:492–500

    Article  CAS  PubMed  Google Scholar 

  68. Sun Y, Zhou YQ, Liu YK, Zhang HQ, Hou GG, Meng QG, Hou Y (2020) Potential anti-neuroinflammatory NF-small ka, CyrillicB inhibitors based on 3,4-dihydronaphthalen-1(2H)-one derivatives. J Enzyme Inhib Med Chem 35(1):1631–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ye YZ, Jian ZH, ** T, Li YN, Zeng Z, Zhang X, **ong XX, Gu LJ (2022) NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflamm 19(1):184

    Article  CAS  Google Scholar 

  70. Zhu H, Jian ZH, Zhong Y, Ye YZ, Zhang YG, Hu XY, Pu B, Gu LJ, **ong XX (2021) Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition. Front Immunol 12:714943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jia YJ, Tong Y, Min LQ, Li YR, Cheng Y (2021) Protective effects of oridonin against cerebral ischemia/reperfusion injury by inhibiting the NLRP3 inflammasome activation. Tissue Cell 71:101514

    Article  CAS  PubMed  Google Scholar 

  72. Lu YN, **ao GD, Luo WF (2016) Minocycline suppresses NLRP3 inflammasome activation in experimental ischemic stroke. Neuroimmunomodulat 23(4):230–238

    Article  CAS  Google Scholar 

  73. Ran Y, Su W, Gao F, Ding Z, Yang S, Ye L, Chen X, Tian G, ** J, Liu Z (2021) Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-kappaB suppression and NLRP3 inflammasome inhibition. Oxid Med Cell Longev 2021:1552127

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH (2012) Inhibition of NF-kappaB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci 47(4):652–660

    Article  CAS  PubMed  Google Scholar 

  75. Kang BK, Kim MK, Kim SY, Lee SJ, Choi YW, Choi BT, Shin HK (2015) Anti-neuroinflammatory effects of Uncaria sinensis in LPS-stimulated BV2 microglia cells and focal cerebral ischemic mice. Am J Chin Med 43(6):1099–1115

    Article  PubMed  Google Scholar 

  76. Zhang YH, Miao L, Peng Q, Fan XD, Song WT, Yang B, Zhang P, Liu GY, Liu JX (2022) Parthenolide modulates cerebral ischemia-induced microglial polarization and alleviates neuroinflammatory injury via the RhoA/ROCK pathway. Phytomedicine 105:154373

    Article  CAS  PubMed  Google Scholar 

  77. Zhang P, Cui J (2021) Neuroprotective effect of fisetin against the cerebral ischemia-reperfusion damage via suppression of oxidative stress and inflammatory parameters. Inflammation 44(4):1490–1506

    Article  CAS  PubMed  Google Scholar 

  78. Hao ML, Li XH, Feng JL, Pan N (2015) Triptolide protects against ischemic stroke in rats. Inflammation 38(4):1617–1623

    Article  CAS  PubMed  Google Scholar 

  79. Fan XJ, Elkin K, Shi YW, Zhang ZH, Cheng YQ, Gu JX, Liang JL, Wang CP, Ji XM (2020) Schisandrin B improves cerebral ischemia and reduces reperfusion injury in rats through TLR4/NF-κB signaling pathway inhibition. Neurol Res 42(8):693–702

    Article  CAS  PubMed  Google Scholar 

  80. Gao CL, Hou GG, Liu J, Ru T, Xu YZ, Zhao SY, Ye H, Zhang LY, Chen KX, Guo YW, Pang T, Li XW (2020) Synthesis and target identification of benzoxepane derivatives as potential anti-neuroinflammatory agents for ischemic stroke. Angew Chem Int Edit 59(6):2429–2439

    Article  CAS  Google Scholar 

  81. Yang B, Sun YX, Lv CC, Zhang W, Chen YZ (2020) Procyanidins exhibits neuroprotective activities against cerebral ischemia reperfusion injury by inhibiting TLR4-NLRP3 inflammasome signal pathway. Psychopharmacology 237(11):3283–3293

    Article  CAS  PubMed  Google Scholar 

  82. An PP, **e J, Qiu S, Liu YJ, Wang JN, **u XH, Li L, Tang M (2019) Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci 232:116599

    Article  CAS  PubMed  Google Scholar 

  83. Zhang F, Yan C, Wei CJ, Yao Y, Ma XF, Gong ZY, Liu SF, Zang DW, Chen JL, Shi FD, Hao JW (2018) Vinpocetine inhibits NF-κB-dependent inflammation in acute ischemic stroke patients. Transl Stroke Res 9(2):174–184

    Article  CAS  PubMed  Google Scholar 

  84. **an MH, Cai JL, Zheng KN, Liu Q, Liu YL, Lin HT, Liang SW, Wang SM (2021) Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke the PI3K/AKT/mTOR and NF-κB pathway. Food Funct 12(17):8056–8067

    Article  CAS  PubMed  Google Scholar 

  85. Liu JY, Xu JK, Mi Y, Yang YQ, Li Q, Zhou D, Wei K, Chen G, Li N, Hou Y (2020) Pterostilbene alleviates cerebral ischemia and reperfusion injury in rats by modulating microglial activation. Food Funct 11(6):5432–5445

    Article  CAS  PubMed  Google Scholar 

  86. Li Z, Hua C, Pan X, Fu X, Wu W (2016) Carvacrol exerts neuroprotective effects via suppression of the inflammatory response in middle cerebral artery occlusion rats. Inflammation 39(4):1566–1572

    Article  CAS  PubMed  Google Scholar 

  87. Ye YZ, ** T, Zhang X, Zeng Z, Ye BX, Wang JC, Zhong Y, **ong XX, Gu LJ (2019) Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway. Front Cell Neurosci 13:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Qiao HM, Zhang XJ, Zhu CH, Dong LP, Wang LN, Zhang XL, **ng YX, Wang CH, Ji Y, Cao XY (2012) Luteolin downregulates TLR4, TLR5, NF-κB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia. Brain Res 1448:71–81

    Article  CAS  PubMed  Google Scholar 

  89. Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Núñez G, Latz E, Kastner DL, Mills KHG, Masters SL, Schroder K, Cooper MA, O’Neill LAJ (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, Morita R (2015) Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 6:7360

    Article  PubMed  Google Scholar 

  91. Sun R, Peng MN, Xu PF, Huang FH, **e Y, Li JJ, Hong Y, Guo HQ, Liu Q, Zhu WS (2020) Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflamm 17(1):330

    Article  CAS  Google Scholar 

  92. Rajanbabu V, Galam L, Fukumoto J, Enciso J, Tadikonda P, Lane TN, Bandyopadhyay S, Parthasarathy PT, Cho Y, Cho SH, Lee YC, Lockey RF, Kolliputi N (2015) Genipin suppresses NLRP3 inflammasome activation through uncoupling protein-2. Cell Immunol 297(1):40–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. He YB, Taylor N, Fourgeaud L, Bhattacharya A (2017) The role of microglial P2X7: modulation of cell death and cytokine release. J Neuroinflamm 14:135

    Article  Google Scholar 

  94. Zhao J, Piao XY, Wu Y, Liang SS, Han F, Liang Q, Shao SJ, Zhao DW (2020) Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother 127:110151

    Article  CAS  PubMed  Google Scholar 

  95. Li Q, Cao YZ, Dang C, Han B, Han RR, Ma HP, Hao JW, Wang LH (2020) Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. Embo Mol Med 12(4):e11002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu Y, Li CH, Wang J, Fang YQ, Sun H, Tao X, Zhou XF, Liao H (2017) Nafamostat mesilate improves neurological outcome and axonal regeneration after stroke in rats. Mol Neurobiol 54(6):4217–4231

    Article  CAS  PubMed  Google Scholar 

  97. Wang J, Li CH, Chen T, Fang YQ, Shi XZ, Pang T, Zhang LY, Liao H (2016) Nafamostat mesilate protects against acute cerebral ischemia via blood-brain barrier protection. Neuropharmacology 105:398–410

    Article  CAS  PubMed  Google Scholar 

  98. Coll RC, Hill JR, Day CJ, Zamoshnikova A, Boucher D, Massey NL, Chitty JL, Fraser JA, Jennings MP, Robertson AAB, Schroder K (2019) MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15(6):556–559

    Article  CAS  PubMed  Google Scholar 

  99. Liu Q, Zhang MM, Guo MX, Zhang QP, Li NZ, Cheng J, Wang SL, Xu GH, Li CF, Zhu JX, Yi LT (2022) Inhibition of microglial NLRP3 with MCC950 attenuates microglial morphology and NLRP3/caspase-1/IL-1β signaling in stress-induced mice. J Neuroimmune Pharm 17(3–4):503–514

    Article  Google Scholar 

  100. Bellut M, Papp L, Bieber M, Kraft P, Stoll G, Schuhmann MK (2022) NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke. Cell Death Dis 13(1):20

    Article  CAS  Google Scholar 

  101. Yang TS, Feng CW, Wang DY, Qu YY, Yang Y, Wang YL, Sun ZR (2020) Neuroprotective and anti-inflammatory effect of tangeretin against cerebral ischemia-reperfusion injury in rats. Inflammation 43(6):2332–2343

    Article  CAS  PubMed  Google Scholar 

  102. Zeyen T, Noristani R, Habib S, Heinisch O, Slowik A, Huber M, Schulz JB, Reich A, Habib P (2020) Microglial-specific depletion of TAK1 is neuroprotective in the acute phase after ischemic stroke. J Mol Med 98(6):833–847

    Article  CAS  PubMed  Google Scholar 

  103. Ma CM, Li S, Hu YC, Ma Y, Wu YQ, Wu CY, Liu X, Wang BW, Hu G, Zhou JW, Yang S (2021) AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. J Exp Med 218(5):e20201796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen Y, He HB, Lin BL, Chen Y, Deng XM, Jiang W, Zhou RB (2021) RRx-001 ameliorates inflammatory diseases by acting as a potent covalent NLRP3 inhibitor. Cell Mol Immunol 18(6):1425–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu CY, Wang X, Liu C, Zhang HL (2019) Pharmacological targeting of microglial activation: new therapeutic approach. Front Cell Neurosci 13:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 23(5):692–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Taabazuing CY, Griswold AR, Bachovchin DA (2020) The NLRP1 and CARD8 inflammasomes. Immunol Rev 297(1):13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sharif H, Hollingsworth LR, Griswold AR, Hsiao JC, Wang QH, Bachovchin DA, Wu H (2021) Dipeptidyl peptidase 9 sets a threshold for CARD8 inflammasome formation by sequestering its active C-terminal fragment. Immunity 54(7):1392–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chui AJ, Griswold AR, Taabazuing CY, Orth EL, Gai K, Rao SD, Ball DP, Hsiao JC, Bachovchin DA (2020) activation of the CARD8 inflammasome requires a disordered region. Cell Rep 33(2):108264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rao SD, Chen QF, Wang QH, Orth-He EL, Saoi M, Griswold AR, Bhattacharjee A, Ball DP, Huang HC, Chuff AJ, Covelli DJ, You SC, Cross JR, Bachovchin DA (2022) M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat Chem Biol 18(5):565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Briard B, Fontaine T, Samir P, Place DE, Muszkieta L, Malireddi RKS, Karki R, Christgen S, Bomme P, Vogel P, Beau R, Mellado E, Ibrahim-Granet O, Henrissat B, Kalathur RC, Robinson C, Latge JP, Kanneganti TD (2020) Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588(7839):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bai Y, Nie S, Jiang G, Zhou Y, Zhou M, Zhao Y, Li S, Wang F, Lv Q, Huang Y, Yang Q, Li Q, Li Y, **a Y, Liu Y, Liu J, Qian J, Li B, Wu G, Wu Y, Wang B, Cheng X, Yang Y, Ke T, Li H, Ren X, Ma X, Liao Y, Xu C, Tu X, Wang QK (2014) Regulation of CARD8 expression by ANRIL and association of CARD8 single nucleotide polymorphism rs2043211 (p.C10X) with ischemic stroke. Stroke 45(2):383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jolugbo P, Ariëns RAS (2021) Thrombus composition and efficacy of thrombolysis and thrombectomy in acute ischemic stroke. Stroke 52(3):1131–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang XX, Wang F, Mao GH, Wu JC, Li M, Han R, She J, Zhang R, Sheng R, Chen Z, Qin ZH (2022) NADPH is superior to NADH or edaravone in ameliorating metabolic disturbance and brain injury in ischemic stroke. Acta Pharmacol Sin 43(3):529–540

    Article  CAS  PubMed  Google Scholar 

  115. Tang YC, Tian HX, Yi T, Chen HB (2016) The critical roles of mitophagy in cerebral ischemia. Protein Cell 7(10):699–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu J, Wang A, Meng X, Yalkun G, Xu A, Gao Z, Chen H, Ji Y, Xu J, Geng D, Zhu R, Liu B, Dong A, Mu H, Lu Z, Li S, Zheng H, Chen X, Wang Y, Zhao X, Wang Y, Investigatorsdagger TT (2021) edaravone dexborneol versus edaravone alone for the treatment of acute ischemic stroke: a phase III, randomized, double-blind, comparative trial. Stroke 52(3):772–780

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant number is BK20221527) and Jiangsu Qing Lan Project (2022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Ze-Jie Zeng, **aobing Lin, and Liu Yang. The drafts of the manuscript were written by Ze-Jie Zeng, and all authors commented on previous versions of the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Yi Li or Wen Gao.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, ZJ., Lin, X., Yang, L. et al. Activation of Inflammasomes and Relevant Modulators for the Treatment of Microglia-mediated Neuroinflammation in Ischemic Stroke. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04225-1

Keywords

Navigation