Log in

TXNIP Regulates NLRP3 Inflammasome-Induced Pyroptosis Related to Aging via cAMP/PKA and PI3K/Akt Signaling Pathways

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aging is an inevitable natural process with time-dependent dysfunction and the occurrence of various diseases, which impose heavy burdens on individuals, families, and society. It has been reported that NLRP3 inflammasome-induced pyroptosis contributes significantly to age-related diseases and aging, while TXNIP is suggested to be involved in regulating pyroptosis mediated by NLRP3. However, the mechanism between TXNIP and NLRP3 inflammasome is still unclear. In this study, we used HT-22 cells to explore the effect of TXNIP on pyroptosis and its potential association with the aging. Also, we delved into the underlying mechanisms. Our findings revealed that TXNIP significantly augmented pyroptosis in HT-22 cells, primarily by enhancing the activation of the NLRP3 inflammasome and promoting the release of proinflammatory cytokines. Remarkably, as TXNIP levels increased, we observed a corresponding rise in the number of p16-positive cells, which is indicative of aging. Furthermore, we conducted experiments to modulate the improvement of TXNIP on NLRP3 inflammasome-induced pyroptosis, that is, the PI3K activator 740 Y-P and the PKA activator DC2797 inhibited the effect, while the PI3K inhibitor LY294002 and the PKA inhibitor H89 enhanced the effect. In conclusion, our study demonstrated that TXNIP regulates NLRP3 inflammasome-induced pyroptosis in HT-22 cells related to aging via the PI3K/Akt and cAMP/PKA pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All datasets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Abbreviations

NLRP3:

Nucleotide-binding oligomerization domain

LRR:

Leucine-rich repeat domain

PYD:

Pyrin domain

CARD:

Caspase recruitment domains

ASC:

Apoptosis-associated speck-like protein containing a CARD domain

TXNIP:

Thioredoxin-interacting protein

IL-1β:

Interleukin-1β

IL-18:

Interleukin-18

TRX:

Thioredoxin

VDUP-1:

Vitamin D3 upregulated protein-1

TBP-2:

Thioredoxin-binding protein-2

PI3K:

The phosphatidylinositol 3-kinase

Akt:

Protein kinase B

cAMP:

Cyclic adenosine monophosphate

PKA:

Protein kinase A

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS:

Fetal bovine serum

GSDMD-N:

Gasdermin-N domains

GSDMD-C:

Gasdermin-C domains

References

  1. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ et al (2014) Geroscience: linking aging to chronic disease. Cell 159(4):709–713. https://doi.org/10.1016/j.cell.2014.10.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leidal AM, Levine B, Debnath J (2018) Autophagy and the cell biology of age-related disease. Nat Cell Biol 20(12):1338–1348. https://doi.org/10.1038/s41556-018-0235-8

    Article  CAS  PubMed  Google Scholar 

  3. Partridge L, Deelen J, Slagboom PE (2018) Facing up to the global challenges of aging. Nature 561(7721):45–56. https://doi.org/10.1038/s41586-018-0457-8

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A (2022) Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Therapeut 236:108053. https://doi.org/10.1016/j.pharmthera.2021.108053

    Article  CAS  Google Scholar 

  5. Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE et al (2008) The NLR gene family: a standard nomenclature. Immunity 28(3):285–287. https://doi.org/10.1016/j.immuni.2008.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, Ting JP (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA 104(19):8041–8046. https://doi.org/10.1073/pnas.0611496104

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation, and signaling. Nat Rev Immunol 16(7):407–420. https://doi.org/10.1038/nri.2016.58

    Article  CAS  PubMed  Google Scholar 

  8. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13):3328. https://doi.org/10.3390/ijms20133328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. https://doi.org/10.1146/annurev.immunol.021908.132612

    Article  CAS  PubMed  Google Scholar 

  11. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665. https://doi.org/10.1038/nature15514

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, Pistell P, Newman S et al (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18(4):519–532. https://doi.org/10.1016/j.cmet.2013.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu Z, Huang P, Sun R, Li X, Li W, Gong W (2022) A novel long-noncoding RNA LncZFAS1 prevents MPP+-induced neuroinflammation through MIB1 activation. Mol Neurobiol 59(2):778–799. https://doi.org/10.1007/s12035-021-02619-z

    Article  CAS  PubMed  Google Scholar 

  14. Han YH, Liu XD, ** MH, Sun HN, Kwon T (2023) Role of NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflam Res 72(9):1839–1859. https://doi.org/10.1007/s00011-023-01790-4

    Article  CAS  Google Scholar 

  15. Panicker N, Kam TI, Wang H, Neifert S, Chou SC, Kumar M, Brahmachari S, Jhaldiyal A et al (2022) Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron 110(15):2422–2437.e9. https://doi.org/10.1016/j.neuron.2022.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Que R, Zheng J, Chang Z, Zhang W, Li H, **e Z, Huang Z, Wang HT et al (2021) Dl-3-n-Butylphthalide rescues dopaminergic neurons in Parkinson’s disease models by inhibiting the NLRP3 inflammasome and ameliorating mitochondrial impairment. Front Immunol 12:794770. https://doi.org/10.3389/fimmu.2021.794770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruan Y, **ong Y, Fang W, Yu Q, Mai Y, Cao Z, Wang K, Lei M et al (2022) Highly sensitive curcumin-conjugated nanotheranostic platform for detecting amyloid-beta plaques by magnetic resonance imaging and reversing cognitive deficits of Alzheimer’s disease via NLRP3-inhibition. J Nanobiotechnol 20(1):322. https://doi.org/10.1186/s12951-022-01524-4

    Article  CAS  Google Scholar 

  18. Wang Z, Meng S, Cao L, Chen Y, Zuo Z, Peng S (2018) Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment. J Neuroinflammation 15(1):109. https://doi.org/10.1186/s12974-018-1137-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsubaki H, Tooyama I, Walker DG (2020) Thioredoxin-interacting protein (TXNIP) with focus on brain and neurodegenerative diseases. Int J Mol Sci 21(24):9357. https://doi.org/10.3390/ijms21249357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, De Keulenaer GW, Lee RT (2002) Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem 277(29):26496–26500. https://doi.org/10.1074/jbc.M202133200

    Article  CAS  PubMed  Google Scholar 

  21. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H et al (1999) Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274(31):21645–21650. https://doi.org/10.1074/jbc.274.31.21645

    Article  CAS  PubMed  Google Scholar 

  22. Ismael S, Nasoohi S, Li L, Aslam KS, Khan MM, El-Remessy AB, McDonald MP, Liao FF et al (2021) Thioredoxin interacting protein regulates age-associated neuroinflammation. Neurobiol Dis 156:105399. https://doi.org/10.1016/j.nbd.2021.105399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang J, Liu L, Zhang Y, Yuan Y, Miao Z, Lu K, Zhang X, Ni R et al (2022) ChemR23 signaling ameliorates cognitive impairments in diabetic mice via dampening oxidative stress and NLRP3 inflammasome activation. Redox Biol 58:102554. https://doi.org/10.1016/j.redox.2022.102554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 9:179. https://doi.org/10.1186/1742-2094-9-179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arboleda G, Cárdenas Y, Rodríguez Y, Morales LC, Matheus L, Arboleda H (2010) Differential regulation of AKT, MAPK, and GSK3β during C2-ceramide-induced neuronal death. Neurotoxicology 31(6):687–693. https://doi.org/10.1016/j.neuro.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  26. Wang HJ, Ran HF, Yin Y, Xu XG, Jiang BX, Yu SQ, Chen YJ, Ren HJ et al (2022) Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling. Acta Pharmacol Sin 43(7):1670–1685. https://doi.org/10.1038/s41401-021-00803-4

    Article  CAS  PubMed  Google Scholar 

  27. Xu S, Wang J, Zhong J, Shao M, Jiang J, Song J, Zhu W, Zhang F et al (2021) CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin Transl Med 11(1):e269. https://doi.org/10.1002/ctm2.269

    Article  CAS  PubMed  Google Scholar 

  28. Xu F, Na L, Li Y, Chen L (2020) Roles of the PI3K/AKT/mTOR signaling pathways in neurodegenerative diseases and tumors. Cell Biosci 10(1):54. https://doi.org/10.1186/s13578-020-00416-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu Z, Xuan L, Wu T, Jiang N, Liu X, Chang J, Wang T, Han N et al (2023) Taxifolin attenuates neuroinflammation and microglial pyroptosis via the PI3K/Akt signaling pathway after spinal cord injury. Int Immunopharmacol 114:109616. https://doi.org/10.1016/j.intimp.2022.109616

    Article  CAS  PubMed  Google Scholar 

  30. Wei B, Liu W, ** L, Guo S, Fan H, ** F, Wei C, Fang D et al (2022) Dexmedetomidine inhibits gasdermin D-induced pyroptosis via the PI3K/AKT/GSK3β pathway to attenuate neuroinflammation in early brain injury after subarachnoid hemorrhage in rats. Front Cell Neurosci 16:899484. https://doi.org/10.3389/fncel.2022.899484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marín-Aguilar F, Lechuga-Vieco AV, Alcocer-Gómez E, Castejón-Vega B, Lucas J, Garrido C, Peralta-Garcia A, Pérez-Pulido AJ et al (2020) NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell 19(1):e13050. https://doi.org/10.1111/acel.13050

    Article  CAS  PubMed  Google Scholar 

  32. Zaccolo M, Zerio A, Lobo MJ (2021) Subcellular organization of the cAMP signaling pathway. Pharmacol Rev 73(1):278–309. https://doi.org/10.1124/pharmrev.120.000086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao C, Wu K, Hao H, Zhao Y, Bao L, Qiu M, He Y, He Z et al (2023) Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced mastitis through the TGR5-cAMP-PKA-NF-κB/NLRP3 pathways in mice. NPJ Biofilms Microb 9(1):8. https://doi.org/10.1038/s41522-023-00374-8

    Article  CAS  Google Scholar 

  34. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160(1-2):62–73. https://doi.org/10.1016/j.cell.2014.11.047

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Le TH, Du Q, Zhao Z, Liu Y, Zou J, Hua W, Liu C et al (2019) Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling. Int Immunopharmacol 71:144–154. https://doi.org/10.1016/j.intimp.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  36. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19(8):477–489. https://doi.org/10.1038/s41577-019-0165-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akbal A, Dernst A, Lovotti M, Mangan MSJ, McManus RM, Latz E (2022) How location and cellular signaling combine to activate the NLRP3 inflammasome. Cell Mol Immunol 19(11):1201–1214. https://doi.org/10.1038/s41423-022-00922-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ et al (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35(16):1766–1778. https://doi.org/10.15252/embj.201694696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Aisker G, Dong H, Halemahebai G, Zhang Y, Tian L (2021) Urolithin A suppresses glucolipotoxicity-induced ER stress and TXNIP/NLRP3/IL-1β inflammation signal in pancreatic β cells by regulating AMPK and autophagy. Phytomedicine 93:153741. https://doi.org/10.1016/j.phymed.2021.153741

    Article  CAS  PubMed  Google Scholar 

  40. Ward R, Li W, Abdul Y, Jackson L, Dong G, Jamil S, Filosa J, Fagan SC et al (2019) NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res 142:237–250. https://doi.org/10.1016/j.phrs.2019.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li JM, Hu T, Zhou XN, Zhang T, Guo JH, Wang MY, Wu YL, Su WJ et al (2023) The involvement of NLRP3 inflammasome in CUMS-induced AD-like pathological changes and related cognitive decline in mice. J Neuroinflammation 20(1):112. https://doi.org/10.1186/s12974-023-02791-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim SR, Lee SG, Kim SH, Kim JH, Choi E, Cho W, Rim JH, Hwang I et al (2020) SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun 11(1):2127. https://doi.org/10.1038/s41467-020-15983-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, Rainone V, Nemni R et al (2016) The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener 11:23. https://doi.org/10.1186/s13024-016-0088-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeldich E, Chen CD, Colvin TA, Bove-Fenderson EA, Liang J, Tucker Zhou TB, Harris DA, Abraham CR (2014) The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem 289(35):24700–24715. https://doi.org/10.1074/jbc.M114.567321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. LaPak KM, Burd CE (2014) The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res: MCR 12(2):167–183. https://doi.org/10.1158/1541-7786.MCR-13-0350

    Article  CAS  PubMed  Google Scholar 

  46. Zuo HJ, Wang PX, Ren XQ, Shi HL, Shi JS, Guo T, Wan C, Li JJ (2023) Gastrodin regulates PI3K/AKT-Sirt3 signaling pathway and proinflammatory mediators in activated microglia. Mol Neurobiol. https://doi.org/10.1007/s12035-023-03743-8

  47. Cavallo D, Landucci E, Gerace E, Lana D, Ugolini F, Henley JM, Giovannini MG, Pellegrini-Giampietro DE (2020) Neuroprotective effects of mGluR5 activation through the PI3K/Akt pathway and the molecular switch of AMPA receptors. Neuropharmacology 162:107810. https://doi.org/10.1016/j.neuropharm.2019.107810

    Article  CAS  PubMed  Google Scholar 

  48. Tian Q, Guo Y, Feng S, Liu C, He P, Wang J, Han W, Yang C et al (2022) Inhibition of CCR2 attenuates neuroinflammation and neuronal apoptosis after subarachnoid hemorrhage through the PI3K/Akt pathway. J Neuroinflammation 19(1):312. https://doi.org/10.1186/s12974-022-02676-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao R, Wu X, Bi XY, Yang H, Zhang Q (2022) Baicalin attenuates blood-spinal cord barrier disruption and apoptosis through PI3K/Akt signaling pathway after spinal cord injury. Neural Regen Res 17(5):1080–1087. https://doi.org/10.4103/1673-5374.324857

    Article  CAS  PubMed  Google Scholar 

  50. Matsuda S, Nakagawa Y, Tsuji A, Kitagishi Y, Nakanishi A, Murai T (2018) Implications of PI3K/AKT/PTEN signaling on superoxide dismutases expression and in the pathogenesis of Alzheimer’s disease. Diseases (Basel, Switzerland) 6(2):28. https://doi.org/10.3390/diseases6020028

    Article  CAS  PubMed  Google Scholar 

  51. Waltereit R, Weller M (2003) Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol 27(1):99–106. https://doi.org/10.1385/MN:27:1:99

    Article  CAS  PubMed  Google Scholar 

  52. Park T, Chen H, Kevala K, Lee JW, Kim HY (2016) N-Docosahexaenoylethanolamine ameliorates LPS-induced neuroinflammation via cAMP/PKA-dependent signaling. J Neuroinflammation 13(1):284. https://doi.org/10.1186/s12974-016-0751-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Y, Glotfelty EJ, Karlsson T, Fortuno LV, Harvey BK, Greig NH (2021) The metabolite GLP-1 (9-36) is neuroprotective and anti-inflammatory in cellular models of neurodegeneration. J Neurochem 159(5):867–886. https://doi.org/10.1111/jnc.15521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo C, **e S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X et al (2016) Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45(4):802–816. https://doi.org/10.1016/j.immuni.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  55. Hu X, Yan J, Huang L, Araujo C, Peng J, Gao L, Liu S, Tang J et al (2021) INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun 91:587–600. https://doi.org/10.1016/j.bbi.2020.09.016

    Article  CAS  PubMed  Google Scholar 

  56. Liu J, Jia S, Yang Y, Piao L, Wang Z, ** Z, Bai L (2023) Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling. Biomed Pharmacother 158:114118. https://doi.org/10.1016/j.biopha.2022.114118

    Article  CAS  PubMed  Google Scholar 

  57. Ao H, Li H, Zhao X, Liu B, Lu L (2021) TXNIP positively regulates the autophagy and apoptosis in the rat müller cell of diabetic retinopathy. Life Sci 267:118988. https://doi.org/10.1016/j.lfs.2020.11898

    Article  CAS  PubMed  Google Scholar 

  58. Huy H, Song HY, Kim MJ, Kim WS, Kim DO, Byun JE, Lee J, Park YJ et al (2018) TXNIP regulates AKT-mediated cellular senescence by direct interaction under glucose-mediated metabolic stress. Aging Cell 17(6):e12836. https://doi.org/10.1111/acel.12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Du C, Wu M, Liu H, Ren Y, Du Y, Wu H, Wei J, Liu C et al (2016) Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease. Int J Biochem Cell Biol 79:1–13. https://doi.org/10.1016/j.biocel.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  60. Jo S, Chen J, Xu G, Grayson TB, Thielen LA, Shalev A (2018) miR-204 controls glucagon-like peptide 1 receptor expression and agonist function. Diabetes 67(2):256–264. https://doi.org/10.2337/db17-0506

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, **ang R, Fang S, Huang K, Fan Y, Liu T (2020) Experimental study on the effect of Tibetan medicine Triphala on the proliferation and apoptosis of pancreatic islet β cells through incretin-cAMP signaling pathway. Biol Pharm Bull 43(2):289–295. https://doi.org/10.1248/bpb.b19-00562

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of Prof. Gong’s Lab for scientific advice and helpful discussions.

Funding

The study was supported by the National Natural Science Foundation of China (82372557), the Capital Funds for Health Improvement and Research (2022-1-2251), and the Natural Science Foundation of Bei**g (7222101).

Author information

Authors and Affiliations

Authors

Contributions

Weijun Gong and **aoshuang ** conceived the project and designed the experiments. W. Gong supervised the experiments. **aoshuang **, Rong Zhang, Yijia Chi, Ziman Zhu, and Ruifeng Sun performed the experiments and data analysis. **aoshuang ** made the figures. Weijun Gong and **aoshuang ** wrote the paper.

Corresponding author

Correspondence to Weijun Gong.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors have read the manuscript and agreed to submit the paper to the journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 80326 kb)

ESM 2

(DOCX 1087 kb)

ESM 3

(DOCX 30 kb)

ESM 4

(DOCX 12 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, X., Zhang, R., Chi, Y. et al. TXNIP Regulates NLRP3 Inflammasome-Induced Pyroptosis Related to Aging via cAMP/PKA and PI3K/Akt Signaling Pathways. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04089-5

Keywords

Navigation