Log in

A Synthetic Steroid 5α-Androst-3β, 5, 6β-triol Alleviates Radiation-Induced Brain Injury in Mice via Inhibiting GBP5/NF-κB/NLRP3 Signal Axis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Radiotherapy for head and neck tumors can lead to a severe complication known as radiation-induced brain injury (RIBI). However, the underlying mechanism of RIBI development remains unclear, and limited prevention and treatment options are available. Neuroactive steroids have shown potential in treating neurological disorders. 5α-Androst-3β, 5, 6β-triol (TRIOL), a synthetic neuroprotective steroid, holds promise as a treatment candidate for RIBI patients. However, the neuroprotective effects and underlying mechanism of TRIOL on RIBI treatment are yet to be elucidated. In the present study, our findings demonstrate TRIOL’s potential as a neuroprotective agent against RIBI. In gamma knife irradiation mouse model, TRIOL treatment significantly reduced brain necrosis volume, microglial activation, and neuronal loss. RNA-sequencing, immunofluorescence, real-time quantitative polymerase chain reaction, siRNA transfection, and western blotting techniques revealed that TRIOL effectively decreased microglial activation, proinflammatory cytokine release, neuron loss, and guanylate-binding protein 5 (GBP5) expression, along with its downstream signaling pathways NF-κB and NLRP3 activation in vitro. In summary, TRIOL effectively alleviate RIBI by inhibiting the GBP5/NF-κB/NLRP3 signal axis, reducing microglia activation and pro-inflammation cytokines release, rescuing neuron loss. This study highlights the potential of TRIOL as a novel and promising therapy drug for RIBI treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gupta B, Johnson NW, Kumar N (2016) Global epidemiology of head and neck cancers: a continuing challenge. Oncology 91(1):13–23. https://doi.org/10.1159/000446117

    Article  PubMed  Google Scholar 

  2. Rube CE, Raid S, Palm J, Rube C (2023) Radiation-induced brain injury: age dependency of neurocognitive dysfunction following radiotherapy. Cancers (Basel) 15(11):2999. https://doi.org/10.3390/cancers15112999

  3. Wilke C, Grosshans D, Duman J, Brown P, Li J (2018) Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults. Neuro Oncol 20(5):597–607. https://doi.org/10.1093/neuonc/nox195

    Article  CAS  PubMed  Google Scholar 

  4. Lin X, Tang L, Li M, Wang M, Guo Z, Lv X, Qiu Y (2021) Irradiation-related longitudinal white matter atrophy underlies cognitive impairment in patients with nasopharyngeal carcinoma. Brain Imaging Behav 15(5):2426–2435

    Article  PubMed  Google Scholar 

  5. Chang YQ, Zhou GJ, Wen HM, He DQ, Xu CL, Chen YR, Li YH, Chen SX et al (2023) Treatment of radiation-induced brain injury with bisdemethoxycurcumin. Neural Regen Res 18(2):416–421. https://doi.org/10.4103/1673-5374.346549

    Article  CAS  PubMed  Google Scholar 

  6. Yang X, Ren H, Fu JJOM, Longevity C (2021) Treatment of radiation-induced brain necrosis. Oxid Med Cell Longev 2021:4793517

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zheng B, Lin J, Li Y, Zhuo X, Huang X, Shen Q, Tang Y (2019) Predictors of the therapeutic effect of corticosteroids on radiation-induced optic neuropathy following nasopharyngeal carcinoma. Support Care Cancer 27:4213–4219

    Article  PubMed  Google Scholar 

  8. Xu Y, Rong X, Hu W, Huang X, Li Y, Zheng D, Cai Z et al (2018) Bevacizumab monotherapy reduces radiation-induced brain necrosis in nasopharyngeal carcinoma patients: a randomized controlled trial. Int J Radiat Oncol Biol Phys 101(5):1087–1095

    Article  CAS  PubMed  Google Scholar 

  9. Vaios EJ, Batich KA, Buckley AF, Dunn-Pirio A, Patel MP, Kirkpatrick JP, Goudar R, Peters KB (2022) Resolution of radiation necrosis with bevacizumab following radiation therapy for primary CNS lymphoma. Oncotarget 13:576–582

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Huang X, Jiang J, Hu W, Hu J, Cai J, Rong X, Cheng J et al (2018) Clinical variables for prediction of the therapeutic effects of bevacizumab monotherapy in nasopharyngeal carcinoma patients with radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys 100(3):621–629. https://doi.org/10.1016/j.ijrobp.2017.11.023

    Article  CAS  PubMed  Google Scholar 

  11. Voss M, Wenger KJ, Fokas E, Forster M-T, Steinbach JP, Ronellenfitsch MW (2021) Single-shot bevacizumab for cerebral radiation injury. BMC Neurol 21:1–7

    Article  Google Scholar 

  12. Turnquist C, Harris BT, Harris CC (2020) Radiation-induced brain injury: current concepts and therapeutic strategies targeting neuroinflammation. Neuriincol Adv 2(1):vdaa057

    Google Scholar 

  13. Lumniczky K, Szatmári T, Sáfrány G (2017) Ionizing radiation-induced immune and inflammatory reactions in the brain. Front Immunol 8:517. https://doi.org/10.3389/fimmu.2017.00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo N, Zhu W, Li X, Fu M, Peng X, Yang F, Zhang Y, Yin H et al (2022) Impact of gut microbiota on radiation-associated cognitive dysfunction and neuroinflammation in mice. Radiat Res 197(4):350–364

    CAS  PubMed  Google Scholar 

  15. Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F (2022) Microglia as therapeutic target for radiation-induced brain injury. Int J Mol Sci 23(15):8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balentova S, Adamkov M (2015) Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci 16(11):27796–27815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Pan H, Lin Z, **ong C, Wei C, Li H, Tong F, Dong X (2021) Neuroprotective effect of fractalkine on radiation-induced brain injury through promoting the M2 polarization of microglia. Mol Neurobiol 58:1074–1087

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Z, Jiang J, He Y, Cai J, **e J, Wu M, **ng M, Zhang Z, Chang H et al (2022) Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury. J Neuroinflammation 19(1):231. https://doi.org/10.1186/s12974-022-02596-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He B, Wang X, He Y, Li H, Yang Y, Shi Z, Liu Q, Wu M et al (2020) Gamma ray-induced glial activation and neuronal loss occur before the delayed onset of brain necrosis. Faseb j 34(10):13361–13375. https://doi.org/10.1096/fj.202000365RR

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Chen X, Chen J, Zhou S, Wen J, Huang Y, Yan G, Zhang JJ (2015) Synthesis and neuroprotection of 5α-androst-3β, 5, 6β-triol derivatives. Ther Targets Neurol Dis 2:e831

    Google Scholar 

  21. Sun HJ, Xue DD, Lu BZ, Li Y, Sheng LX, Zhu Z, Zhou YW, Zhang JX, Lin GJ, Lin SZ, Yan GM, Chen YP, Yin W (2019) A novel synthetic steroid of 2β,3α,5α-trihydroxy-androst-6-one alleviates the loss of rat retinal ganglion cells caused by acute intraocular hypertension via inhibiting the inflammatory activation of microglia. Molecules 24(2):252. https://doi.org/10.3390/molecules24020252

  22. Xue D, Wei C, Zhou Y, Wang K, Zhou Y, Chen C, Li Y, Sheng L et al (2022) TRIOL inhibits rapid intracellular acidification and cerebral ischemic injury: the role of glutamate in neuronal metabolic reprogramming. ACS Chem Neurosci 13(14):2110–2121. https://doi.org/10.1021/acschemneuro.2c00119

    Article  CAS  PubMed  Google Scholar 

  23. Kutsch M, Coers J (2021) Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS J 288(20):5826–5849. https://doi.org/10.1111/febs.15662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu P, Ye L, Ren Y, Zhao G, Zhang Y, Lu S, Li Q, Wu C et al (2023) Chemotherapy-induced phlebitis via the GBP5/NLRP3 inflammasome axis and the therapeutic effect of aescin. Br J Pharmacol 180(8):1132–1147. https://doi.org/10.1111/bph.16002

    Article  CAS  PubMed  Google Scholar 

  25. Zhou L, Zhao H, Zhao H, Meng X, Zhao Z, **e H, Li J, Tang Y et al (2023) GBP5 exacerbates rosacea-like skin inflammation by skewing macrophage polarization towards M1 phenotype through the NF-κB signalling pathway. J Europ Acad Dermatol Venereol: JEADV 37(4):796–809. https://doi.org/10.1111/jdv.18725

    Article  CAS  Google Scholar 

  26. Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336(6080):481–485. https://doi.org/10.1126/science.1217141

    Article  CAS  PubMed  Google Scholar 

  27. Tang L, Wang Y, Leng T, Sun H, Zhou Y, Zhu W, Qiu P, Zhang J et al (2015) Cholesterol metabolite cholestane-3beta,5alpha,6beta-triol suppresses epileptic seizures by negative modulation of voltage-gated sodium channels. Steroids 98:166–172. https://doi.org/10.1016/j.steroids.2014.12.025

    Article  CAS  PubMed  Google Scholar 

  28. Zhang P, Chen JS, Li QY, Sheng LX, Gao YX, Lu BZ, Zhu WB, Zhan XY et al (2020) Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zool Res 41(1):3–19. https://doi.org/10.24272/j.issn.2095-8137.2020.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang L, Yan M, Leng T, Yin W, Cai S, Duan S, Zhu W, Lin S et al (2018) Cholestane-3beta, 5alpha, 6beta-triol suppresses neuronal hyperexcitability via binding to voltage-gated sodium channels. Biochem Biophys Res Commun 496(1):95–100. https://doi.org/10.1016/j.bbrc.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  30. Shi Z, Yu P, Lin WJ, Chen S, Hu X, Chen S, Cheng J, Liu Q et al (2023) Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8(+) T lymphocytes. Neuron 111(5):696-710e 699. https://doi.org/10.1016/j.neuron.2022.12.009

    Article  CAS  PubMed  Google Scholar 

  31. Sun HJ, Xue DD, Lu BZ, Li Y, Sheng LX, Zhu Z, Zhou YW, et al. (2019) A novel synthetic steroid of 2beta,3alpha,5alpha-trihydroxy-androst-6-one alleviates the loss of rat retinal ganglion cells caused by acute intraocular hypertension via inhibiting the inflammatory activation of microglia. Molecules 24(2):252. https://doi.org/10.3390/molecules24020252

  32. Jeyaretna DS, Curry WT Jr, Batchelor TT, Stemmer-Rachamimov A, Plotkin SR (2011) Exacerbation of cerebral radiation necrosis by bevacizumab. J Clin Oncol: Off J Amer Soc Clin Oncol 29(7):e159-162. https://doi.org/10.1200/jco.2010.31.4815

    Article  Google Scholar 

  33. Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18(4):225–242

    Article  CAS  PubMed  Google Scholar 

  34. Kim S, Chung H, Ngoc Mai H, Nam Y, Shin SJ, Park YH, Chung MJ, Lee JK et al (2020) Low-dose ionizing radiation modulates microglia phenotypes in the models of Alzheimer’s disease. Int J Mol Sci 21(12):4532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen J, Leng T, Chen W, Yan M, Yin W, Huang Y, Lin S, Duan D et al (2013) A synthetic steroid 5alpha-androst-3beta,5,6beta-triol blocks hypoxia/reoxygenation-induced neuronal injuries via protection of mitochondrial function. Steroids 78(10):996–1002. https://doi.org/10.1016/j.steroids.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  36. Tang L, Yan M, Leng T, Yin W, Cai S, Duan S, Zhu W, Lin S et al (2018) Cholestane-3β, 5α, 6β-triol suppresses neuronal hyperexcitability via binding to voltage-gated sodium channels. Biochem Biophys Res Commun 496(1):95–100. https://doi.org/10.1016/j.bbrc.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  37. Yan M, Leng T, Tang L, Zheng X, Lu B, Li Y, Sheng L, Lin S et al (2017) Neuroprotectant androst-3β, 5α, 6β-triol suppresses TNF-α-induced endothelial adhesion molecules expression and neutrophil adhesion to endothelial cells by attenuation of CYLD-NF-κB pathway. Biochem Biophys Res Commun 483(2):892–896. https://doi.org/10.1016/j.bbrc.2017.01.030

    Article  CAS  PubMed  Google Scholar 

  38. Hu H, Zhou Y, Leng T, Liu A, Wang Y, You X, Chen J, Tang L et al (2014) The major cholesterol metabolite cholestane-3β,5α,6β-triol functions as an endogenous neuroprotectant. J Neurosci: Off J Soc Neurosci 34(34):11426–11438. https://doi.org/10.1523/jneurosci.0344-14.2014

    Article  Google Scholar 

  39. Wang J, Pan H, Lin Z, **ong C, Wei C, Li H, Tong F, Dong X (2021) Neuroprotective effect of fractalkine on radiation-induced brain injury through promoting the M2 polarization of microglia. Mol Neurobiol 58(3):1074–1087. https://doi.org/10.1007/s12035-020-02138-3

    Article  CAS  PubMed  Google Scholar 

  40. Xu Y, Hu W, Liu Y, Xu P, Li Z, Wu R, Shi X, Tang Y (2016) P2Y6 receptor-mediated microglial phagocytosis in radiation-induced brain injury. Mol Neurobiol 53(6):3552–3564. https://doi.org/10.1007/s12035-015-9282-3

    Article  CAS  PubMed  Google Scholar 

  41. Jenrow KA, Brown SL, Lapanowski K, Naei H, Kolozsvary A, Kim JH (2013) Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment. Radiat Res 179(5):549–556. https://doi.org/10.1667/RR3026.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boyd A, Byrne S, Middleton RJ, Banati RB, Liu GJ (2021) Control of neuroinflammation through radiation-induced microglial changes. Cells 10(9):2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Y, Lin X, Wang W, Wang W, Cheng S, Huang Y, Zou Y, Ke J et al (2022) The proinflammatory role of guanylate-binding protein 5 in inflammatory bowel diseases. Front Microbiol 13:926915. https://doi.org/10.3389/fmicb.2022.926915

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Guangzhou Cellprotek Pharmaceutical Co. Ltd who provide the TRIOL.

Funding

This study was supported by the National Natural Science Foundation of China (no. 81925031 and 81820108026), Guangzhou Science and Technology Program Key Projects (202007030001), and STI 2030 Major Projects (2022ZD0211600) to Y.T.; National Natural Science Foundation of China (no. 82103775) and China Postdoctoral Science Foundation (2022M723589) to Z.S.; and Guang Dong Basic and Applied Basic Research Foundation (2022A1515110189) to K.Z.

Author information

Authors and Affiliations

Authors

Contributions

ZK designed this study, performed the experiments, and drafted the manuscript. LKJ and SY performed the experiments, carried out extra data analysis, and revised the manuscript. CST performed high-throughput sequencing analysis. HX and XRQ assisted in gamma ray irradiation and MR imaging. MXY, LSJ, and YJW assisted in tissue processing and IF experiments. ZXQ and YMJ assisted in drug administration of animals. HYJ and YW revised the manuscript. CYP, TYM, and SZS revised the manuscript, and supervised the design of the study and conceived the manuscript. All authors reviewed and approved the final version of this paper.

Corresponding authors

Correspondence to Yupin Chen, Yamei Tang or Zhongshan Shi.

Ethics declarations

Ethics Approval

This study was approved by the Ethics Committee of Sun Yat-sen University (SYXK 2022–0289).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

12035_2023_3831_MOESM2_ESM.tif

Supplementary file2 (TIF 11774 KB) TRIOL alleviated radiation-induced myelin loss and astrocyte activation. (A) Representative images of MAG immunofluorescent staining in the thalamus of sham mice and two irradiated mice at 8 weeks post irradiation. Red: MAG, blue: DAPI. Quantification of the average fluorescence intensity number of MAG in the thalamus from immunofluorescent images. (B) Representative images of GFAP immunofluorescent staining in thalamus from sham mice and two irradiated mice at 8 weeks post irradiation. Red: GFAP, blue: DAPI. Quantification of the number of GFAP+ cells in the thalamus sections. n= 5 mice per group. Data were analyzed by one-way ANOVA followed by Tukey's post hoc analysis. All other groups were compared with the control group. Scale bar = 50 μm. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, K., Liu, K., Song, Y. et al. A Synthetic Steroid 5α-Androst-3β, 5, 6β-triol Alleviates Radiation-Induced Brain Injury in Mice via Inhibiting GBP5/NF-κB/NLRP3 Signal Axis. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03831-9

Keywords

Navigation