Log in

Oligodeoxynucleotide IMT504: Effects on Central Nervous System Repair Following Demyelination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an immune-mediated central nervous system (CNS) disease characterized by demyelination resulting from oligodendrocyte loss and inflammation. Cuprizone (CPZ) administration experimentally replicates MS pattern-III lesions, generating an inflammatory response through microgliosis and astrogliosis. Potentially remyelinating agents include oligodeoxynucleotides (ODN) with a specific immunomodulatory sequence consisting of the active motif PyNTTTTGT. In this work, the remyelinating effects of ODN IMT504 were evaluated through immunohistochemistry and qPCR analyses in a rat CPZ-induced demyelination model. Subcutaneous IMT504 administration exacerbated the pro-inflammatory response to demyelination and accelerated the transition to an anti-inflammatory state. IMT504 reduced microgliosis in general and the number of phagocytic microglia in particular and expanded the population of oligodendroglial progenitor cells (OPCs), later reflected in an increase in mature oligodendrocytes. The intracranial injection of IMT504 and intravenous inoculation of IMT504-treated B lymphocytes rendered comparable results. Altogether, these findings unveil potentially beneficial properties of IMT504 in the regulation of neuroinflammation and oligodendrogenesis, which may aid the development of therapies for demyelinating diseases such as MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are not publicly available but are available from the corresponding author on reasonable request.

Abbreviations

ANOVA:

Analysis of variance

Arg1:

Arginase 1

BSA:

Bovine serum albumin

CC:

Corpus callosum

CD24:

Cluster of differentiation 24

CD38:

Cluster of differentiation 38

CD59:

Cluster of differentiation 59

CD68:

Cluster of differentiation 68

CICUAL:

Comité Institucional para el Cuidado y Uso de Animales de Laboratorio

CIOMS:

Council for International Organizations for Medical Science

CNS:

Central nervous system

CpG:

Unmethylated cytosine-guanosine dinucleotides

CPZ:

Cuprizone

Ct:

Cycle threshold

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IFNα:

Interferon alpha

Iba1:

Ionized calcium-binding adaptor molecule 1

ICLAS:

International Council for Laboratory Animal Science

IL-1β:

Interleukin-1β

IL 10:

Interleukin 10

IL 35:

Interleukin 35

IHC:

Immunohistochemistry

iNOS:

Inducible nitric oxide synthase

IC:

Intracranial injection

IV:

Injected into the tail vein

LB:

Lymphocyte B

MAG:

Myelin-associated glycoprotein

MBP:

Myelin basic protein

MHC I:

Major histocompatibility complex I

MHC II:

Major histocompatibility complex II

mRNA:

Messenger ribonucleic acid

MS:

Multiple sclerosis

NG2:

Neural/glial antigen 2

NSC:

Neural stem cell

ODN:

Oligodeoxynucleotide

OL:

Oligodendrocyte

OPC:

Oligodendrocyte precursor cell

PBS:

Phosphate-buffered saline

PBST:

PBS containing 0.1% Triton

PDGFRα:

Platelet-derived growth factor receptor alpha

qPCR:

Quantitative polymerase chain reaction

RNA:

Ribonucleic acid

RRID:

Research Resource Identifiers

SC:

Via subcutaneous

SEM:

Standard error of the mean

SNPs:

Single-nucleotide polymorphisms

SS:

Saline solution

SVZ:

Subventricular zone

TGF-β:

Transforming growth factor beta

Wnt:

Blending of the name of the Drosophila segment polarity gene Wingless and the name of the vertebrate homolog, integrated or int-1

References

  1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  CAS  PubMed  Google Scholar 

  2. Ramagopalan SV, Deluca GC, Degenhardt A, Ebers GC (2008) The genetics of clinical outcome in multiple sclerosis. J Neuroimmunol 201-202:183–199

    Article  CAS  PubMed  Google Scholar 

  3. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  PubMed  Google Scholar 

  4. Vega-Riquer JM, Mendez-Victoriano G, Morales-Luckie RA, Gonzalez-Perez O (2019) Five decades of cuprizone, an updated model to replicate demyelinating diseases. Curr Neuropharmacol 17:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeffery ND, Blakemore WF (1997) Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 120(Pt 1):27–37

    Article  PubMed  Google Scholar 

  6. Liebetanz D, Merkler D (2006) Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Exp Neurol 202:217–224

    Article  CAS  PubMed  Google Scholar 

  7. Franklin RJM, Frisen J, Lyons DA (2021) Revisiting remyelination: towards a consensus on the regeneration of CNS myelin. Semin Cell Dev Biol 116:3–9

    Article  PubMed  Google Scholar 

  8. Grinspan JB (2020) Inhibitors of myelination and remyelination, bone morphogenetic proteins, are upregulated in human neurological disease. Neurochem Res 45:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sabo JK, Aumann TD, Merlo D, Kilpatrick TJ, Cate HS (2011) Remyelination is altered by bone morphogenic protein signaling in demyelinated lesions. J Neurosci 31:4504–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang JK, Fancy SP, Zhao C, Rowitch DH, Ffrench-Constant C, Franklin RJ (2011) Myelin regeneration in multiple sclerosis: targeting endogenous stem cells. Neurotherapeutics 8:650–658

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24:476–488

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez-Castaneda A, Gaultier A (2016) Adult oligodendrocyte progenitor cells - multifaceted regulators of the CNS in health and disease. Brain Behav Immun 57:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez-Perez O, Alvarez-Buylla A (2011) Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 67:147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tognatta R, Miller RH (2016) Contribution of the oligodendrocyte lineage to CNS repair and neurodegenerative pathologies. Neuropharmacology 110:539–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lloyd AF, Miron VE (2019) The pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol 15:447–458

    Article  PubMed  Google Scholar 

  18. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  19. Adamo AM, Paez PM, Escobar Cabrera OE, Wolfson M, Franco PG, Pasquini JM, Soto EF (2006) Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Exp Neurol 198:519–529

    Article  CAS  PubMed  Google Scholar 

  20. Gomez Pinto LI, Rodriguez D, Adamo AM, Mathieu PA (2018) TGF-beta pro-oligodendrogenic effects on adult SVZ progenitor cultures and its interaction with the Notch signaling pathway. Glia 66:396–412

    Article  PubMed  Google Scholar 

  21. Mathieu PA, Almeira Gubiani MF, Rodriguez D, Gomez Pinto LI, Calcagno ML, Adamo AM (2019) Demyelination-remyelination in the central nervous system: ligand-dependent participation of the notch signaling pathway. Toxicol Sci 171:172–192

    Article  CAS  PubMed  Google Scholar 

  22. Dieu RS, Wais V, Sorensen MZ, Marczynska J, Dubik M, Kavan S, Thomassen M, Burton M, Kruse T, Khorooshi R et al (2021) Central nervous system-endogenous TLR7 and TLR9 induce different immune responses and effects on experimental autoimmune encephalomyelitis. Front Neurosci 15:685645

    Article  PubMed  PubMed Central  Google Scholar 

  23. Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, Piesche M, Schroers R, Weiss E, Kirschning CJ et al (2006) Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 116:456–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marta M (2009) Toll-like receptors in multiple sclerosis mouse experimental models. Ann N Y Acad Sci 1173:458–462

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez JM, Elias F, Flo J, Lopez RA, Zorzopulos J, Montaner AD (2006) Immunostimulatory PyNTTTTGT oligodeoxynucleotides: structural properties and refinement of the active motif. Oligonucleotides 16:275–285

    Article  CAS  PubMed  Google Scholar 

  26. Elias F, Flo J, Lopez RA, Zorzopulos J, Montaner A, Rodriguez JM (2003) Strong cytosine-guanosine-independent immunostimulation in humans and other primates by synthetic oligodeoxynucleotides with PyNTTTTGT motifs. J Immunol 171:3697–3704

    Article  CAS  PubMed  Google Scholar 

  27. Hernando Insua A, Montaner AD, Rodriguez JM, Elias F, Flo J, Lopez RA, Zorzopulos J, Hofer EL, Chasseing NA (2007) IMT504, the prototype of the immunostimulatory oligonucleotides of the PyNTTTTGT class, increases the number of progenitors of mesenchymal stem cells both in vitro and in vivo: potential use in tissue repair therapy. Stem Cells 25:1047–1054

    Article  PubMed  Google Scholar 

  28. Rodriguez JM, Elias F, Montaner A, Flo J, Lopez RA, Zorzopulos J, Franco RJ, Lenial SP, Lopez Salon M, Pirpignani ML et al (2006) Oligonucleotide IMT504 induces an immunogenic phenotype and apoptosis in chronic lymphocytic leukemia cells. Medicina 66:9–16

    CAS  PubMed  Google Scholar 

  29. Coronel MF, Hernando-Insua A, Rodriguez JM, Elias F, Chasseing NA, Montaner AD, Villar MJ (2008) Oligonucleotide IMT504 reduces neuropathic pain after peripheral nerve injury. Neurosci Lett 444:69–73

    Article  CAS  PubMed  Google Scholar 

  30. Leiguarda C, Coronel MF, Montaner AD, Villar MJ, Brumovsky PR (2018) Long-lasting ameliorating effects of the oligodeoxynucleotide IMT504 on mechanical allodynia and hindpaw edema in rats with chronic hindpaw inflammation. Neurosci Lett 666:17–23

    Article  CAS  PubMed  Google Scholar 

  31. Leiguarda C, Potilinski C, Rubione J, Tate P, Villar MJ, Montaner A, Bisagno V, Constandil L, Brumovsky PR (2021) IMT504 provides analgesia by modulating cell infiltrate and inflammatory milieu in a chronic pain model. J Neuroimmune Pharmacol 16:651–666

    Article  PubMed  Google Scholar 

  32. Chahin A, Opal SM, Zorzopulos J, Jobes DV, Migdady Y, Yamamoto M, Parejo N, Palardy JE, Horn DL (2015) The novel immunotherapeutic oligodeoxynucleotide IMT504 protects neutropenic animals from fatal Pseudomonas aeruginosa bacteremia and sepsis. Antimicrob Agents Chemother 59:1225–1229

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hernando-Insua A, Rodriguez JM, Elias F, Flo J, Lopez R, Franco R, Lago N, Zorzopulos J, Montaner AD (2010) A high dose of IMT504, the PyNTTTTGT prototype immunostimulatory oligonucleotide, does not alter embryonic development in rats. Oligonucleotides 20:33–36

    Article  CAS  PubMed  Google Scholar 

  34. Franco R, Rodriguez JM, Elias F, Hernando-Insua A, Flo J, Lopez R, Nagle C, Lago N, Zorzopulos J, Horn DL et al (2014) Non-clinical safety studies of IMT504, a unique non-CpG oligonucleotide. Nucleic acid therapeutics 24:267–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeis T, Enz L, Schaeren-Wiemers N (2016) The immunomodulatory oligodendrocyte. Brain Res 1641:139–148

    Article  CAS  PubMed  Google Scholar 

  36. Zelek WM, Watkins LM, Howell OW, Evans R, Loveless S, Robertson NP, Beenes M, Willems L, Brandwijk R, Morgan BP (2019) Measurement of soluble CD59 in CSF in demyelinating disease: evidence for an intrathecal source of soluble CD59. Mult Scler 25:523–531

    Article  CAS  PubMed  Google Scholar 

  37. Aparicio E, Mathieu P, Pereira Luppi M, Almeira Gubiani MF, Adamo AM (2013) The Notch signaling pathway: its role in focal CNS demyelination and apotransferrin-induced remyelination. J Neurochem 127:819–836

    Article  CAS  PubMed  Google Scholar 

  38. Franco PG, Silvestroff L, Soto EF, Pasquini JM (2008) Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination. Exp Neurol 212:458–467

    Article  CAS  PubMed  Google Scholar 

  39. Rosato Siri MV, Badaracco ME, Pasquini JM (2013) Glatiramer promotes oligodendroglial cell maturation in a cuprizone-induced demyelination model. Neurochem Int 63:10–24

    Article  CAS  PubMed  Google Scholar 

  40. Dawes CJ (1988) Introduction to biological electron microscopy: theory and techniques. Publisher Burlington, VT: Ladd Research Industries, Inc

    Google Scholar 

  41. Mercer EH, Birbeck MSC (1972) Electron microscopy. A handbook for biologists, third edn. Blackwell Scientific Publications

    Google Scholar 

  42. Oberhammer F, Fritsch G, Schmied M, Pavelka M, Printz D, Purchio T, Lassmann H, Schulte-Hermann R (1993) Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J Cell Sci 104(Pt 2):317–326

    Article  CAS  PubMed  Google Scholar 

  43. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  CAS  PubMed  Google Scholar 

  44. Leiguarda C, Villarreal A, Potilinski C, Pelissier T, Coronel MF, Bayo J, Ramos AJ, Montaner A, Villar MJ, Constandil L et al (2021) Intrathecal administration of an anti-nociceptive non-CpG oligodeoxynucleotide reduces glial activation and central sensitization. J Neuroimmune Pharmacol 16:818–834

    Article  CAS  PubMed  Google Scholar 

  45. Di Rienzo JA, Guzmán AW, Casanoves F (2002) Comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Environ Stat 7:1–14

    Article  Google Scholar 

  46. Pinheiro JC, Bates DM (2004) Mixed-effects models in S and S-Plus. Springer, U.S.A, p. 206

    Google Scholar 

  47. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:209–219

    Article  CAS  PubMed  Google Scholar 

  48. Chomiak T, Hu B (2009) What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS one 4:e7754

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558

    Article  CAS  PubMed  Google Scholar 

  50. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    Article  CAS  PubMed  Google Scholar 

  51. Zorzopulos J, Opal SM, Hernando-Insua A, Rodriguez JM, Elias F, Flo J, Lopez RA, Chasseing NA, Lux-Lantos VA, Coronel MF et al (2017) Immunomodulatory oligonucleotide IMT504: effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 9:45–67

    Article  PubMed  PubMed Central  Google Scholar 

  52. Marta M, Andersson A, Isaksson M, Kampe O, Lobell A (2008) Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur J Immunol 38:565–575

    Article  CAS  PubMed  Google Scholar 

  53. McMurran CE, Zhao C, Franklin RJM (2019) Toxin-based models to investigate demyelination and remyelination. Methods Mol Biol 1936:377–396

    Article  CAS  PubMed  Google Scholar 

  54. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116

    Article  CAS  PubMed  Google Scholar 

  55. Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, Ladner KJ, Bevan AK, Foust KD, Godbout JP et al (2014) Microglia induce motor neuron death via the classical NF-kappaB pathway in amyotrophic lateral sclerosis. Neuron 81:1009–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miron VE (2017) Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. J Leukoc Biol 101:1103–1108

    Article  CAS  PubMed  Google Scholar 

  57. Domingues HS, Portugal CC, Socodato R, Relvas JB (2016) Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol 4:71

    PubMed  PubMed Central  Google Scholar 

  58. Domingues HS, Cruz A, Chan JR, Relvas JB, Rubinstein B, Pinto IM (2018) Mechanical plasticity during oligodendrocyte differentiation and myelination. Glia 66:5–14

    Article  PubMed  Google Scholar 

  59. Santos EN, Fields RD (2021) Regulation of myelination by microglia. Sci Adv 7:eabk1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34:2231–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rodriguez JM, Marchicio J, Lopez M, Ziblat A, Elias F, Flo J, Lopez RA, Horn D, Zorzopulos J, Montaner AD (2015) PyNTTTTGT and CpG immunostimulatory oligonucleotides: effect on granulocyte/monocyte colony-stimulating factor (GM-CSF) secretion by human CD56+ (NK and NKT) cells. PloS One 10:e0117484

    Article  PubMed  PubMed Central  Google Scholar 

  62. Smets I, Fiddes B, Garcia-Perez JE, He D, Mallants K, Liao W, Dooley J, Wang G, Humblet-Baron S, Dubois B et al (2018) Multiple sclerosis risk variants alter expression of co-stimulatory genes in B cells. Brain 141:786–796

    Article  PubMed  PubMed Central  Google Scholar 

  63. Patel J, Pires A, Derman A, Fatterpekar G, Charlson RE, Oh C, Kister I (2022) Development and validation of a simple and practical method for differentiating MS from other neuroinflammatory disorders based on lesion distribution on brain MRI. J Clin Neurosci 101:32–36

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by grants from ANPCyT (PICT 2017-0890), Universidad de Buenos Aires (20020160100050BA) and CONICET (PIP0567), Argentina.

Author information

Authors and Affiliations

Authors

Contributions

P.A.M. and Y.R.S. performed most of the experiments. F.E. performed the isolation and culture of LB. A.S.S carried out microglial and OPC culture experiments. P.A.M. and A.M.A. designed and supported all the experiments. M.L.C contributed with statistical analysis. R.L. collaborated with the discussion of this paper. A.M.A. wrote the manuscript.

Corresponding author

Correspondence to Ana M. Adamo.

Ethics declarations

Ethics Approval

Experiments were carried out following the guidelines of the Institutional Committee for the Care and Use of Laboratory Animals, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, approved by Council Directive (CICUAL; CUDAP:EXP-FYB 0043071/2019). This study was exploratory and was not pre-registered.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Figure S1: Analysis of LB purity. LBs were isolated from rat spleen, incubated with CD45RA:RPE, and analyzed by flow cytometry to confirm LB purity. Histogram shows the CD45 positive cells. Percentage of LBs was determined through the FlowJo 7.6. software. Representative image shows that 97.5% cells correspond to CD45 LBs. (TIF 434 kb)

ESM 2

Figure S2: Characterization of CPZ demyelination. A, Body weight of control animals treated with saline solution (Control-SS) and CPZ animals treated with saline solution (CPZ-SS) or IMT504 (CPZ-IMT504) at the different experimental time points. Values are expressed as the mean ± SEM. B, Representative images of Sudan black staining of the CC of control and CPZ-demyelinated animals. Statistical analysis was done as described in Materials and Methods; different letters indicate significant differences, p<0.05. (TIF 6416 kb)

ESM 3

Figure S3: Stimulation of HEK 293-hTLR9 cells with ODNs 2006 and IMT504. Cells were treated with 15 μg/ml 2006 and IMT504 or with culture medium (negative control, NC) for 24 h. Cells were lysed, and NFkB activation was measured relative to the NC. Results are expressed as the average activation index with respect to the NC ± standard deviation. Statistical analysis was done using Student’s t-tests as described in Materials and Methods. (***p < 0.0001). (TIF 975 kb)

ESM 4

Figure S4: Effects of SC treatment with IMT504 in control animals. Quantification of A, Iba-1+, B, CD68+Iba-1+, C, PDGFRα+ and D, MAG+ cells per area in the CC of control animals treated with saline solution (Control-SS) or IMT504 (Control-IMT504). Values are expressed as the mean ± SEM. qPCR analyses of E, iNOS, F, IL-1β, G, Arg1, H, TGF- β, I, PDGFRα, J, MAG and K, MBP transcript levels in the CC of control animals treated with saline solution (Control-SS) or IMT504 (Control-IMT504). Results expressed as RQ fold changes regarding controls (dotted lines). Values are expressed as the mean ± SEM. Statistical analysis was done as described in Materials and Methods; different letters indicate significant differences, p<0.05. (TIF 33747 kb)

ESM 5

(DOCX 18 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieu, P.A., Sampertegui, Y.R., Elias, F. et al. Oligodeoxynucleotide IMT504: Effects on Central Nervous System Repair Following Demyelination. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03825-7

Keywords

Navigation