Log in

Exosomal LncRNA TM7SF3-AU1 Aggravates White Matter Injury via MiR-702-3p/SARM1 Signaling After Subarachnoid Hemorrhage in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is a devastating disease associated with a high mortality and morbidity. Exosomes have been considered as a potential therapeutic target for SAH. However, the effect of exosomes in SAH remains to be elucidated. In this study, we focused on investigating the effect of plasma exosomal lncRNA TM7SF3-AU1 in white matter injury after SAH. The SAH model was established by means of endovascular perforation. Exosomes were extracted from rat plasma samples. The expression of RNAs in the exosomes was detected by the transcriptomic microarray. Differentially expressed circRNA, lncRNA, and mRNA were obtained. The ceRNA network showed that the lncRNA TM7SF3-AU1 and miR-702-3p were closely associated with SARM1. Knocking down TM7SF3-AU1 promoted the expression of miR-702-3p and suppressed the expression of SARM1, and knocking down TM7SF3-AU1 also attenuated white matter injury after SAH. In addition, knocking down TM7SF3-AU1 improved the neurological deficits in locomotion, anxiety, learning, memory, and electrophysiological activity after SAH. Mechanistically, TM7SF3-AU1 was able to absorb miR-702-3p, which directly bind the SARM1 mRNA. Furthermore, the white matter injury attenuated by knockdown of TM7SF3-AU1 was partially reversed by the miR-702-3p antagomir in SAH rats. Taken together, this study showed that TM7SF3-AU1 acts as a sponge for miR-702-3p, reducing the inhibitory effect of miR-702-3p on SARM1, resulting in increased SARM1 expression and thus leading to white matter injury after SAH. Our study provides new insights into exosome-associated white matter injury. It also highlights TM7SF3-AU1 as a potential therapeutic target for white matter injury after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of the present study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Zhang Z, Zhang A, Liu Y, Hu X, Fang Y, Wang X et al (2022) New mechanisms and targets of subarachnoid hemorrhage: a focus on mitochondria. Curr Neuropharmacol 20:1278–1296. https://doi.org/10.2174/1570159X19666211101103646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Claassen J, Park S (2022) Spontaneous subarachnoid haemorrhage. The Lancet 400:846–862. https://doi.org/10.1016/s0140-6736(22)00938-2

    Article  Google Scholar 

  3. Daou BJ, Koduri S, Thompson BG, Chaudhary N, Pandey AS (2019) Clinical and experimental aspects of aneurysmal subarachnoid hemorrhage. CNS Neurosci Ther 25:1096–1112. https://doi.org/10.1111/cns.13222

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eagles ME, Tso MK, Macdonald RL (2019) Cognitive impairment, functional outcome, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.12.152

    Article  PubMed  Google Scholar 

  5. Neifert SN, Chapman EK, Martini ML, Shuman WH, Schupper AJ, Oermann EK et al (2021) Aneurysmal subarachnoid hemorrhage: the last decade. Transl Stroke Res 12:428–446. https://doi.org/10.1007/s12975-020-00867-0

    Article  PubMed  Google Scholar 

  6. Coulibaly AP, Provencio JJ (2020) Aneurysmal subarachnoid hemorrhage: an overview of inflammation-induced cellular changes. Neurotherapeutics 17:436–445. https://doi.org/10.1007/s13311-019-00829-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noonin C, Thongboonkerd V (2021) Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics 11:4436–4451. https://doi.org/10.7150/thno.54004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902

    Article  CAS  PubMed  Google Scholar 

  9. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367. https://doi.org/10.1126/science.aau6977

  10. Pinnell JR, Cui M, Tieu K (2021) Exosomes in Parkinson disease. J Neurochem 157:413–428. https://doi.org/10.1111/jnc.15288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang T, Ma S, Lv J, Wang X, Afewerky HK, Li H et al (2021) The emerging role of exosomes in Alzheimer’s disease. Ageing Res Rev 68:101321. https://doi.org/10.1016/j.arr.2021.101321

    Article  CAS  PubMed  Google Scholar 

  12. Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M et al (2021) Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 32:466–477. https://doi.org/10.1016/j.annonc.2021.01.074

    Article  CAS  PubMed  Google Scholar 

  13. Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y et al (2020) Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 5:144. https://doi.org/10.1038/s41392-020-00258-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y et al (2021) Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics 11:8926–8944. https://doi.org/10.7150/thno.62330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang Y, Duan L, Lu J, **a J (2021) Engineering exosomes for targeted drug delivery. Theranostics 11:3183–3195. https://doi.org/10.7150/thno.52570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Jiang M, Li H, Wang Y, Shen H, Li X et al (2020) CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage. J Neuroinflammation 17:209. https://doi.org/10.1186/s12974-020-01882-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao X, **ong Y, Li Q, Han M, Shan D, Yang G et al (2020) Extracellular vesicle-mediated transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via the PTEN/Akt pathway after subarachnoid hemorrhage. Cell Death Dis 11:363. https://doi.org/10.1038/s41419-020-2530-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lai N, Wu D, Liang T, Pan P, Yuan G, Li X et al (2020) Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J Neuroinflammation 17:74. https://doi.org/10.1186/s12974-020-01745-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu P, Cai J, Chen Q, Han B, Meng X, Li Y et al (2019) Lnc-TALC promotes O(6)-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun 10:2045. https://doi.org/10.1038/s41467-019-10025-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang J, Tang W, Yang M, Yin Y, Li H, Hu F et al (2021) Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials 273:120784. https://doi.org/10.1016/j.biomaterials.2021.120784

    Article  CAS  PubMed  Google Scholar 

  21. Ru X, Qu J, Li Q, Zhou J, Huang S, Li W et al (2021) MiR-706 alleviates white matter injury via downregulating PKCalpha/MST1/NF-kappaB pathway after subarachnoid hemorrhage in mice. Exp Neurol 341:113688. https://doi.org/10.1016/j.expneurol.2021.113688

    Article  CAS  PubMed  Google Scholar 

  22. Ru X, Gao L, Zhou J, Li Q, Zuo S, Chen Y et al (2021) Secondary white matter injury and therapeutic targets after subarachnoid hemorrhage. Front Neurol 12:659740. https://doi.org/10.3389/fneur.2021.659740

    Article  PubMed  PubMed Central  Google Scholar 

  23. Figley MD, Gu W, Nanson JD, Shi Y, Sasaki Y, Cunnea K et al (2021) SARM1 is a metabolic sensor activated by an increased NMN/NAD(+) ratio to trigger axon degeneration. Neuron 109:1118–36 e11. https://doi.org/10.1016/j.neuron.2021.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ko KW, Milbrandt J, DiAntonio A (2020) SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. J Cell Biol 219. https://doi.org/10.1083/jcb.201912047

  25. Summers DW, Frey E, Walker LJ, Milbrandt J, DiAntonio A (2020) DLK activation synergizes with mitochondrial dysfunction to downregulate axon survival factors and promote SARM1-dependent axon degeneration. Mol Neurobiol 57:1146–1158. https://doi.org/10.1007/s12035-019-01796-2

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Z, Zhao G, Liu L, He J, Darwazeh R, Liu H et al (2019) Bexarotene exerts protective effects through modulation of the cerebral vascular smooth muscle cell phenotypic transformation by regulating PPARgamma/FLAP/LTB4 after subarachnoid hemorrhage in rats. Cell Transplant 963689719842161. https://doi.org/10.1177/0963689719842161

  27. Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167:327–334. https://doi.org/10.1016/j.jneumeth.2007.08.004

    Article  PubMed  Google Scholar 

  28. Liu L, Zhang P, Zhang Z, Hu Q, He J, Liu H et al (2019) LXA4 ameliorates cerebrovascular endothelial dysfunction by reducing acute inflammation after subarachnoid hemorrhage in rats. Neuroscience 408:105–114. https://doi.org/10.1016/j.neuroscience.2019.03.038

    Article  CAS  PubMed  Google Scholar 

  29. Niatsetskaya Z, Sosunov S, Stepanova A, Goldman J, Galkin A, Neginskaya M et al (2020) Cyclophilin D-dependent oligodendrocyte mitochondrial ion leak contributes to neonatal white matter injury. J Clin Invest 130:5536–5550. https://doi.org/10.1172/JCI133082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen H, Zhou C, Zheng J, Zhang Z, Deng Y, Cheng C et al (2022) PTEN and AKT/GSK-3beta/CRMP-2 signaling pathway are involved in neuronal apoptosis and axonal injury in early brain injury after SAH in rats. Genes Dis 9:252–267. https://doi.org/10.1016/j.gendis.2020.05.002

    Article  CAS  PubMed  Google Scholar 

  31. Xu W, Yan J, Ocak U, Lenahan C, Shao A, Tang J et al (2021) Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism via AMPK/SIRT1/PGC-1alpha pathway in rats. Theranostics 11:522–539. https://doi.org/10.7150/thno.49426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu P, Tao C, Zhu Y, Wang G, Kong L, Li W et al (2021) TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation 18:188. https://doi.org/10.1186/s12974-021-02226-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isaac R, Reis FCG, Ying W, Olefsky JM (2021) Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab 33:1744–1762. https://doi.org/10.1016/j.cmet.2021.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ et al (2019) Reassessment of exosome composition. Cell 177:428–45 e18. https://doi.org/10.1016/j.cell.2019.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu H, Zhang J, Xu X, Lu S, Yang D, **e C et al (2021) SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-kappaB signaling. Theranostics 11:4187–4206. https://doi.org/10.7150/thno.49054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bradshaw DV Jr, Knutsen AK, Korotcov A, Sullivan GM, Radomski KL, Dardzinski BJ et al (2021) Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after experimental traumatic brain injury based on pathological, radiological, and functional measures. Acta Neuropathol Commun 9:89. https://doi.org/10.1186/s40478-021-01193-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang LY, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A et al (2020) Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics 10:74–90. https://doi.org/10.7150/thno.35841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chamberlain KA, Huang N, **e Y, LiCausi F, Li S, Li Y et al (2021) Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 109:3456–72 e8. https://doi.org/10.1016/j.neuron.2021.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Michaels NJ, Lemmon K, Plemel JR, Jensen SK, Mishra MK, Brown D et al (2020) Aging-exacerbated acute axon and myelin injury is associated with microglia-derived reactive oxygen species and is alleviated by the generic medication indapamide. J Neurosci 40:8587–8600. https://doi.org/10.1523/JNEUROSCI.1098-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng J, Pang J, Huang L, Enkhjargal B, Zhang T, Mo J et al (2019) LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol 21:101121. https://doi.org/10.1016/j.redox.2019.101121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pang J, Peng J, Yang P, Kuai L, Chen L, Zhang JH et al (2019) White matter injury in early brain injury after subarachnoid hemorrhage. Cell Transplant 28:26–35. https://doi.org/10.1177/0963689718812054

    Article  PubMed  Google Scholar 

  42. Reijmer YD, van den Heerik MS, Heinen R, Leemans A, Hendrikse J, de Vis JB et al (2018) Microstructural white matter abnormalities and cognitive impairment after aneurysmal subarachnoid hemorrhage. Stroke 49:2040–2045. https://doi.org/10.1161/STROKEAHA.118.021622

    Article  PubMed  Google Scholar 

  43. Du M, Wu C, Yu R, Cheng Y, Tang Z, Wu B et al (2022) A novel circular RNA, circIgfbp2, links neural plasticity and anxiety through targeting mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after traumatic brain injury. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01711-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank ** **a

Authors
  • Contributions

    ZZ and XS conceived and designed the study. ZZ, JY, and HC performed all the experiments. GZ, LL, and XX analyzed the data. ZZ and XS wrote the manuscript. CZ and JY supervised the project. All authors contributed to the article and approved the submitted version.

    Corresponding author

    Correspondence to **aochuan Sun.

    Ethics declarations

    Ethics Approval and Consent to Participate

    All experiments of animals were approved by Chongqing Medical University Animal Care in accordance with the Guide for the Care and Use of Laboratory Animals by the National Institute of Health.

    Consent for Publication

    Not applicable.

    Competing Interests

    The authors declare no competing interests.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Zhang, Z., Yan, J., Chen, H. et al. Exosomal LncRNA TM7SF3-AU1 Aggravates White Matter Injury via MiR-702-3p/SARM1 Signaling After Subarachnoid Hemorrhage in Rats. Mol Neurobiol 61, 4783–4803 (2024). https://doi.org/10.1007/s12035-023-03811-z

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s12035-023-03811-z

    Keywords

    Navigation