Log in

Identification of Potential Neddylation-related Key Genes in Ischemic Stroke based on Machine Learning Methods

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic stroke (IS) is a complex neurological disease that can lead to severe disability or even death. Understanding the molecular mechanisms involved in the occurrence and progression of IS is of great significance for develo** effective treatment strategies. In this context, the role of neddylation refers to the potential impact of neddylation on various cellular processes, which may contribute to the pathogenesis and outcome of IS. First, differential analysis was conducted on the GSE16561 dataset from the GEO database to identify 350 differentially expressed genes (DEGs) between the IS and Control groups. By intersecting the differential genes with neddylation-related genes, 11 neddylation-related DEGs were obtained. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that the DEGs were mainly enriched in hematopoietic cell lineage and neutrophil degranulation, while the neddylation-related DEGs were mainly enriched in apoptosis and post-translational protein modification. Further Lasso-Cox and random forest analyses were performed on the 11 neddylation-related DEGs, identifying key genes SRPK1, BIRC2, and KLHL3. Additionally, validation of the key genes was carried out using the GSE58294 dataset and clinical patients. Finally, the correlation between the key genes and ferroptosis and cuproptosis was analyzed, and a ceRNA network was constructed. Our study helps to elucidate the complex role of neddylation in the mechanism of ischemic stroke, providing potential opportunities for the development of therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data and materials will be made available on request.

References

  1. Feske SK (2021) Ischemic Stroke. Am J Med 134(12):1457–1464. https://doi.org/10.1016/j.amjmed.2021.07.027

    Article  PubMed  Google Scholar 

  2. Zubair AS, Sheth KN (2021) Emergency Care of Patients with Acute Ischemic Stroke. Neurol Clin 39(2):391–404. https://doi.org/10.1016/j.ncl.2021.02.001

    Article  PubMed  Google Scholar 

  3. Li KHC, Jesuthasan A, Kui C, Davies R, Tse G, Lip GYH (2021) Acute ischemic stroke management: concepts and controversies. A narrative review. Expert Rev Neurother 21(1):65–79. https://doi.org/10.1080/14737175.2021.1836963

    Article  CAS  PubMed  Google Scholar 

  4. Diener HC, Hankey GJ (2020) Primary and Secondary Prevention of Ischemic Stroke and Cerebral Hemorrhage: JACC Focus Seminar. J Am Coll Cardiol 75(15):1804–1818. https://doi.org/10.1016/j.jacc.2019.12.072

    Article  PubMed  Google Scholar 

  5. Jiang Y, Liu Z, Liao Y, Sun S, Dai Y, Tang Y (2022) Ischemic stroke: From pathological mechanisms to neuroprotective strategies. Front Neurol 13:1013083. https://doi.org/10.3389/fneur.2022.1013083

    Article  PubMed  PubMed Central  Google Scholar 

  6. Enchev RI, Schulman BA, Peter M (2015) Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol 16(1):30–44. https://doi.org/10.1038/nrm3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He X, Zhu A, Feng J, Wang X (2022) Role of neddylation in neurological development and diseases. Biotechnol Appl Biochem 69(1):330–341. https://doi.org/10.1002/bab.2112

    Article  CAS  PubMed  Google Scholar 

  8. Wang K, Liu X (2022) Determining the Effects of Neddylation on Cullin-RING Ligase-Dependent Protein Ubiquitination. Curr Protoc 2(3):e401. https://doi.org/10.1002/cpz1.401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin X, Dang W, Yang X, Wang K, Kebreab E, Lyu L (2022) Neddylation inactivation affects cell cycle and apoptosis in sheep follicular granulosa cells. J Cell Physiol 237(8):3278–3291. https://doi.org/10.1002/jcp.30777

    Article  CAS  PubMed  Google Scholar 

  10. Guo Z, Wang S, **e Y, Han Y, Hu S, Guan H, **e D, Bai C et al (2020) HUWE1-dependent DNA-PKcs neddylation modulates its autophosphorylation in DNA damage response. Cell Death Dis 11(5):400. https://doi.org/10.1038/s41419-020-2611-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang L, **g H, Li H, Chen W, Luo B, Zhang H, Dong Z, Li L et al (2020) Neddylation is critical to cortical development by regulating Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 117(42):26448–26459. https://doi.org/10.1073/pnas.2005395117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song JM, Kang M, Lee S, Kim J, Park S, Park DH, Lee S, Suh YH (2023) Deneddylating enzyme SENP8 regulates neuronal development. J Neurochem 165(3):348–361. https://doi.org/10.1111/jnc.15797

    Article  CAS  PubMed  Google Scholar 

  13. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. The Gene Ontology C (2019) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 47(D1):D330–D338. https://doi.org/10.1093/nar/gky1055

    Article  CAS  Google Scholar 

  15. Wang Q, Qiao W, Zhang H, Liu B, Li J, Zang C, Mei T, Zheng J et al (2022) Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma. Front Immunol 13:1019638. https://doi.org/10.3389/fimmu.2022.1019638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen H, Jiang R, Huang W, Chen K, Zeng R, Wu H, Yang Q, Guo K et al (2022) Identification of energy metabolism-related biomarkers for risk prediction of heart failure patients using random forest algorithm. Front Cardiovasc Med 9:993142. https://doi.org/10.3389/fcvm.2022.993142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Runde D (2021) Calculated decisions: NIH Stroke Scale/Score (NIHSS). Emerg Med Pract 23(Suppl 6):CD3–CD5

    PubMed  Google Scholar 

  18. Xu Q, Guohui M, Li D, Bai F, Fang J, Zhang G, **ng Y, Zhou J et al (2021) lncRNA C2dat2 facilitates autophagy and apoptosis via the miR-30d-5p/DDIT4/mTOR axis in cerebral ischemia-reperfusion injury. Aging 13(8):11315–11335. https://doi.org/10.18632/aging.202824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu Y, Li K, Zhao Y, Zhou L, Liu Y, Zhao J (2023) Role of Ferroptosis in Stroke. Cell Mol Neurobiol 43(1):205–222. https://doi.org/10.1007/s10571-022-01196-6

    Article  CAS  PubMed  Google Scholar 

  20. Guo Q, Ma M, Yu H, Han Y, Zhang D (2023) Dexmedetomidine enables copper homeostasis in cerebral ischemia/reperfusion via ferredoxin 1. Ann Med 55(1):2209735. https://doi.org/10.1080/07853890.2023.2209735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171. https://doi.org/10.1016/j.pneurobio.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  22. Yang C, Hawkins KE, Dore S, Candelario-Jalil E (2019) Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 316(2):C135–C153. https://doi.org/10.1152/ajpcell.00136.2018

    Article  CAS  PubMed  Google Scholar 

  23. Muliyil S, Narasimha M (2014) Mitochondrial ROS regulates cytoskeletal and mitochondrial remodeling to tune cell and tissue dynamics in a model for wound healing. Dev. Cell 28(3):239–52. https://doi.org/10.1016/j.devcel.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  24. Li C, Chen L, Wang Y, Wang T, Di D, Zhang H, Zhao H, Shen X et al (2021) Protein Nanoparticle-Related Osmotic Pressure Modifies Nonselective Permeability of the Blood-Brain Barrier by Increasing Membrane Fluidity. Int J Nanomed 16:1663–1680. https://doi.org/10.2147/IJN.S291286

    Article  Google Scholar 

  25. Mishra YG, Manavathi B (2021) Focal adhesion dynamics in cellular function and disease. Cell Signal 85:110046. https://doi.org/10.1016/j.cellsig.2021.110046

    Article  CAS  PubMed  Google Scholar 

  26. Paluch EK, Aspalter IM, Sixt M (2016) Focal Adhesion-Independent Cell Migration. Annu Rev Cell Dev Biol 32:469–490. https://doi.org/10.1146/annurev-cellbio-111315-125341

    Article  CAS  PubMed  Google Scholar 

  27. Jia C, Lovins C, Malone HM, Keasey MP, Hagg T (2022) Female-specific neuroprotection after ischemic stroke by vitronectin-focal adhesion kinase inhibition. J Cereb Blood Flow Metab 42(10):1961–1974. https://doi.org/10.1177/0271678X221107871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eidson LN, Gao Q, Qu H, Kikuchi DS, Campos ACP, Faidley EA, Sun YY, Kuan CY et al (2021) Poldip2 controls leukocyte infiltration into the ischemic brain by regulating focal adhesion kinase-mediated VCAM-1 induction. Sci Rep 11(1):5533. https://doi.org/10.1038/s41598-021-84987-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee S, Jeon YM, Cha SJ, Kim S, Kwon Y, Jo M, Jang YN, Lee S et al (2020) PTK2/FAK regulates UPS impairment via SQSTM1/p62 phosphorylation in TARDBP/TDP-43 proteinopathies. Autophagy 16(8):1396–1412. https://doi.org/10.1080/15548627.2019.1686729

    Article  CAS  PubMed  Google Scholar 

  30. Oh TW, Park KH, Jung HW, Park YK (2015) Neuroprotective effect of the hairy root extract of Angelica gigas NAKAI on transient focal cerebral ischemia in rats through the regulation of angiogenesis. BMC Complement Altern Med 15:101. https://doi.org/10.1186/s12906-015-0589-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li M, Meng Z, Yu S, Li J, Wang Y, Yang W, Wu H (2022) Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis. Chem Biol Interact 366:110137. https://doi.org/10.1016/j.cbi.2022.110137

    Article  CAS  PubMed  Google Scholar 

  32. Jang JW, Lee JK, Hur H, Kim TW, Joo SP, Piao MS (2014) Rutin improves functional outcome via reducing the elevated matrix metalloproteinase-9 level in a photothrombotic focal ischemic model of rats. J Neurol Sci 339(1–2):75–80. https://doi.org/10.1016/j.jns.2014.01.024

    Article  CAS  PubMed  Google Scholar 

  33. Santoro MM, Samuel T, Mitchell T, Reed JC, Stainier DY (2007) Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis. Nat Genet 39(11):1397–402. https://doi.org/10.1038/ng.2007.8

    Article  CAS  PubMed  Google Scholar 

  34. Meng L, Qi Y, Du K, Zhang X (2023) LNC01296 Regulates Apoptosis Genes Birc2 and Bak1 by Targeting miRNA-29c and Participates in Neuroprotection During Cerebral Ischemia/Reperfusion Injury in Rats. Turk Neurosurg 33(1):39–45. https://doi.org/10.5137/1019-5149.JTN.36564-21.1

    Article  PubMed  Google Scholar 

  35. Mak PY, Mak DH, Ruvolo V, Jacamo R, Kornblau SM, Kantarjian H, Andreeff M, Carter BZ (2014) Apoptosis repressor with caspase recruitment domain modulates second mitochondrial-derived activator of caspases mimetic-induced cell death through BIRC2/MAP3K14 signalling in acute myeloid leukaemia. Br J Haematol 167(3):376–84. https://doi.org/10.1111/bjh.13054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qi X, Yan Q, Shang Y, Zhao R, Ding X, Gao SJ, Li W, Lu C (2022) A viral interferon regulatory factor degrades RNA-binding protein hnRNP Q1 to enhance aerobic glycolysis via recruiting E3 ubiquitin ligase KLHL3 and decaying GDPD1 mRNA. Cell Death Differ 29(11):2233–2246. https://doi.org/10.1038/s41418-022-01011-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Montaner J, Ramiro L, Simats A, Tiedt S, Makris K, Jickling GC, Debette S, Sanchez JC et al (2020) Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 16(5):247–264. https://doi.org/10.1038/s41582-020-0350-6

    Article  PubMed  Google Scholar 

  38. Oltean S, Gammons M, Hulse R, Hamdollah-Zadeh M, Mavrou A, Donaldson L, Salmon AH, Harper SJ et al (2012) SRPK1 inhibition in vivo: modulation of VEGF splicing and potential treatment for multiple diseases. Biochem Soc Trans 40(4):831–5. https://doi.org/10.1042/BST20120051

    Article  CAS  PubMed  Google Scholar 

  39. Li Z, Li A, Yan L, Yang T, Xu W, Fan P (2020) Downregulation of long noncoding RNA DLEU1 attenuates hypersensitivity in chronic constriction injury-induced neuropathic pain in rats by targeting miR-133a-3p/SRPK1 axis. Mol Med 26(1):104. https://doi.org/10.1186/s10020-020-00235-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bustos F, Segarra-Fas A, Nardocci G, Cassidy A, Antico O, Davidson L, Brandenburg L, Macartney TJ et al (2020) Functional Diversification of SRSF Protein Kinase to Control Ubiquitin-Dependent Neurodevelopmental Signaling. Dev Cell 55(5):629-647 e7. https://doi.org/10.1016/j.devcel.2020.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jamros MA, Aubol BE, Keshwani MM, Zhang Z, Stamm S, Adams JA (2015) Intra-domain Cross-talk Regulates Serine-arginine Protein Kinase 1-dependent Phosphorylation and Splicing Function of Transformer 2beta1. J Biol Chem 290(28):17269–81. https://doi.org/10.1074/jbc.M115.656579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R, Zhang Z (2021) ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 93:312–321. https://doi.org/10.1016/j.bbi.2021.01.003

    Article  CAS  PubMed  Google Scholar 

  43. Zhang M, Li W, Wang Y, Wang T, Ma M, Tian C (2020) Association Between the Change of Serum Copper and Ischemic Stroke: a Systematic Review and Meta-Analysis. J Mol Neurosci 70(3):475–480. https://doi.org/10.1007/s12031-019-01441-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was funded by the Zhenjiang Municipal Health and Family Planning Commission (No. SH2021056).

Author information

Authors and Affiliations

Authors

Contributions

Dian Huang and Chenglin Song conceived and designed the project; Junfei Shen collected the specimens and performed the experiments; Yan Zhu analyzed and interpreted the data; Dian Huang wrote the paper. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junfei Shen or Chenglin Song.

Ethics declarations

Ethics Approval

This study was approved by the Ethics Committee of Jiangsu University Affiliated Hospital and conducted in accordance with the guiding principles of the Helsinki Declaration. All participants signed a written informed consent form before the study.

Competing Interests

The authors have stated that they do not have any conflicts of interest related to the research study or the publication of the findings.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Zhu, Y., Shen, J. et al. Identification of Potential Neddylation-related Key Genes in Ischemic Stroke based on Machine Learning Methods. Mol Neurobiol 61, 2530–2541 (2024). https://doi.org/10.1007/s12035-023-03738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03738-5

Keywords

Navigation