Log in

Inflammation and Brain Structure in Alzheimer’s Disease and Other Neurodegenerative Disorders: a Mendelian Randomization Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Previous in vitro and post-mortem studies have reported the role of inflammation in neurodegenerative disorders. However, the association between inflammation and brain structure in vivo and the transcriptome-driven functional basis with relevance to neurodegenerative disorders remains elusive. The aim of the present study is to identify the association among inflammation, brain structure, and neurodegenerative disorders at genetic and transcriptomic levels. Genetic variants associated with inflammatory cytokines were selected from the latest and largest genome-wide association studies of European ancestry. Neurodegenerative disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and dementia with Lewy bodies (DLB) and brain structure imaging measures were selected as the outcomes. Two-sample Mendelian randomization analyses were conducted to identify the causal associations. Single-nucleus transcriptome data of the occipitotemporal cortex was further analyzed to identify the differential expressed genes in AD, which were tested for biological processes and protein interaction network. MR analysis indicated that genetically predicted TREM2 and sTREM2 were significantly associated with AD (TREM2: z-score = −9.088, p-value = 1.02 × 10−19; sTREM2: z-score = −7.495, p-value = 6.61 × 10−14). The present study found no evidence to support the causal associations between other inflammatory cytokines and the risks of AD, PD, ALS, or DLB. Genetically predicted TREM2 was significantly associated with the cortical thickness of inferior temporal (z-score = −4.238, p-value = 2.26 × 10−5) and pole temporal (z-score = −4.549, p-value = 5.40 × 10−6). In the occipitotemporal cortex samples, microglia were the main source of TREM2 gene and showed increasing expression of genes associated with inflammation and immunity. The present study has leveraged genetic and transcriptomic data to identify the association among TREM2, temporal lobe, and AD and the underlying cellular and molecular basis, thus providing a new perspective on the role of TREM2 in AD and insights into the complex associations among inflammation, brain structure, and neurodegenerative disorders, particularly AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data used in the present study were publicly available. The summary-level GWAS datasets of inflammatory cytokines and neurodegenerative disorders were acquired from GWAS Catalog website (https://www.ebi.ac.uk/gwas). The summary-level GWAS datasets of brain structure imaging measures were acquired from Oxford Brain Imaging Genetics Server BIG40 (https://open.win.ox.ac.uk/ukbiobank/big40/).

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

CRP:

C-reactive protein

CSF:

Cerebrospinal fluid

CTR:

Control

CX3CL1:

Fractalkine

DEG:

Differentially expressed gene

DLB:

Dementia due to Lewy’s bodies

GO:

Gene Ontology

GSEA:

Gene-set enrichment analysis

GWAS:

Genome-wide association study

IL-1:

Interleukin-1

IL-2:

Interleukin-2

IL-6:

Interleukin-6

IVW:

Inverse-variance weighted

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MR:

Mendelian randomization

MSigDB:

Molecular Signatures Database

PD:

Parkinson’s disease

TREM2:

Triggering receptor expressed on myeloid cell 2

TNFR1:

Tumor necrosis factor receptor 1

TNFR2:

Tumor necrosis factor receptor 2

TNFSF14:

Tumor necrosis factor ligand superfamily member 14

TRAIL:

TNF-related apoptosis-inducing ligand

TRAILR2:

TNF-related apoptosis-inducing ligand receptor 2

TRANCE:

TNF-related activation-induced cytokine

UKB:

UK Biobank

YKL40:

Chitinase-3-like protein 1

References

  1. Glass CK, Saijo K, Winner B et al (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934. https://doi.org/10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. https://doi.org/10.1016/S1474-4422(09)70062-6

    Article  CAS  PubMed  Google Scholar 

  4. McCauley ME, Baloh RH (2019) Inflammation in ALS/FTD pathogenesis. Acta Neuropathol 137:715–730. https://doi.org/10.1007/s00401-018-1933-9

    Article  CAS  PubMed  Google Scholar 

  5. Amin J, Erskine D, Donaghy PC et al (2022) Inflammation in dementia with Lewy bodies. Neurobiol Dis 168:105698. https://doi.org/10.1016/j.nbd.2022.105698

    Article  CAS  PubMed  Google Scholar 

  6. Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172. https://doi.org/10.1038/s41582-020-00435-y

    Article  PubMed  Google Scholar 

  7. Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18:759–772. https://doi.org/10.1038/s41577-018-0051-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng X, Shen Y, Li R (2014) Targeting TNF: a therapeutic strategy for Alzheimer’s disease. Drug Discov Today 19:1822–1827. https://doi.org/10.1016/j.drudis.2014.06.029

    Article  CAS  PubMed  Google Scholar 

  9. Luan Y-Y, Yao Y-M (2018) The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front Immunol 9:1302. https://doi.org/10.3389/fimmu.2018.01302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Green C, Shen X, Stevenson AJ et al (2021) Structural brain correlates of serum and epigenetic markers of inflammation in major depressive disorder. Brain Behav Immun 92:39–48. https://doi.org/10.1016/j.bbi.2020.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams JA, Burgess S, Suckling J et al (2022) Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: a Mendelian randomization study. JAMA Psychiatry 79:498–507. https://doi.org/10.1001/jamapsychiatry.2022.0407

    Article  PubMed  PubMed Central  Google Scholar 

  12. MacKenzie G, Subramaniam S, Caldwell LJ et al (2021) Research priorities for neuroimmunology: identifying the key research questions to be addressed by 2030. Wellcome Open Res 6:194. https://doi.org/10.12688/wellcomeopenres.16997.1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783. https://doi.org/10.1126/science.aag2590

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Lawlor DA, Harbord RM, Sterne JAC et al (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27:1133–1163. https://doi.org/10.1002/sim.3034

    Article  MathSciNet  PubMed  Google Scholar 

  15. Davies NM, Holmes MV, Davey Smith G (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362:k601. https://doi.org/10.1136/bmj.k601

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang M, Song W-M, Ming C et al (2022) Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer’s disease: review, recommendation, implementation and application. Mol Neurodegener 17:17. https://doi.org/10.1186/s13024-022-00517-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerrits E, Brouwer N, Kooistra SM et al (2021) Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol 141:681–696. https://doi.org/10.1007/s00401-021-02263-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Finneran DJ, Nash KR (2019) Neuroinflammation and fractalkine signaling in Alzheimer’s disease. J Neuroinflammation 16:30. https://doi.org/10.1186/s12974-019-1412-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nordengen K, Kirsebom B-E, Henjum K et al (2019) Glial activation and inflammation along the Alzheimer’s disease continuum. J Neuroinflammation 16:46. https://doi.org/10.1186/s12974-019-1399-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Herder C, Nuotio M-L, Shah S et al (2014) Genetic determinants of circulating interleukin-1 receptor antagonist levels and their association with glycemic traits. Diabetes 63:4343–4359. https://doi.org/10.2337/db14-0731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahola-Olli AV, Würtz P, Havulinna AS et al (2017) Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am J Hum Genet 100:40–50. https://doi.org/10.1016/j.ajhg.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  22. Folkersen L, Gustafsson S, Wang Q et al (2020) Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab 2:1135–1148. https://doi.org/10.1038/s42255-020-00287-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ligthart S, Vaez A, Võsa U et al (2018) Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. Am J Hum Genet 103:691–706. https://doi.org/10.1016/j.ajhg.2018.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gudjonsson A, Gudmundsdottir V, Axelsson GT et al (2022) A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat Commun 13. https://doi.org/10.1038/s41467-021-27850-z

  25. Hou X-H, Bi Y-L, Tan M-S et al (2019) Genome-wide association study identifies Alzheimer’s risk variant in MS4A6A influencing cerebrospinal fluid sTREM2 levels. Neurobiol Aging 84:241.e13–241.e20. https://doi.org/10.1016/j.neurobiolaging.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  26. Schwartzentruber J, Cooper S, Liu JZ et al (2021) Genome-wide meta-analysis, fine-map**, and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat Genet 53:392–402. https://doi.org/10.1038/s41588-020-00776-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nalls MA, Blauwendraat C, Vallerga CL et al (2019) Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18:1091–1102. https://doi.org/10.1016/S1474-4422(19)30320-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Rheenen W, van der Spek RAA, Bakker MK et al (2021) Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet 53:1636–1648. https://doi.org/10.1038/s41588-021-00973-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chia R, Sabir MS, Bandres-Ciga S et al (2021) Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 53:294–303. https://doi.org/10.1038/s41588-021-00785-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith SM, Douaud G, Chen W et al (2021) An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat Neurosci 24:737–745. https://doi.org/10.1038/s41593-021-00826-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665. https://doi.org/10.1002/gepi.21758

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bowden J, Del Greco MF, Minelli C et al (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 36:1783–1802. https://doi.org/10.1002/sim.7221

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  33. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525. https://doi.org/10.1093/ije/dyv080

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hemani G, Zheng J, Elsworth B et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7:e34408. https://doi.org/10.7554/eLife.34408

    Article  PubMed  PubMed Central  Google Scholar 

  35. Butler A, Hoffman P, Smibert P et al (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Korsunsky I, Millard N, Fan J et al (2019) Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 16:1289–1296. https://doi.org/10.1038/s41592-019-0619-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu T, Hu E, Xu S et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2:100141. https://doi.org/10.1016/j.xinn.2021.100141

    Article  CAS  PubMed  Google Scholar 

  39. Liberzon A, Birger C, Thorvaldsdóttir H et al (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang J, Fu Z, Zhang X et al (2020) TREM2 ectodomain and its soluble form in Alzheimer’s disease. J Neuroinflammation 17(1):204. https://doi.org/10.1186/s12974-020-01878-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yeh FL, Hansen DV, Sheng M (2017) TREM2, microglia, and neurodegenerative diseases. Trends Mol Med 23:512–533. https://doi.org/10.1016/j.molmed.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi K, Rochford CDP, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647–657. https://doi.org/10.1084/jem.20041611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu B, Liu Y, Hwang S et al (2022) Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. Mol Neurodegener 17:58. https://doi.org/10.1186/s13024-022-00562-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Filipello F, Goldsbury C, You SF et al (2022) Soluble TREM2: innocent bystander or active player in neurological diseases? Neurobiol Dis 165:105630. https://doi.org/10.1016/j.nbd.2022.105630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Cella M, Mallinson K et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071. https://doi.org/10.1016/j.cell.2015.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhong L, Xu Y, Zhuo R et al (2019) Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun 10:1365. https://doi.org/10.1038/s41467-019-09118-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tan YJ, Ng ASL, Vipin A et al (2017) Higher peripheral TREM2 mRNA levels relate to cognitive deficits and hippocampal atrophy in Alzheimer’s disease and amnestic mild cognitive impairment. J Alzheimers Dis 58:413–423. https://doi.org/10.3233/JAD-161277

    Article  CAS  PubMed  Google Scholar 

  48. Falcon C, Monté-Rubio GC, Grau-Rivera O et al (2019) CSF glial biomarkers YKL40 and sTREM2 are associated with longitudinal volume and diffusivity changes in cognitively unimpaired individuals. Neuroimage Clin 23:101801. https://doi.org/10.1016/j.nicl.2019.101801

    Article  PubMed  PubMed Central  Google Scholar 

  49. Halaas NB, Henjum K, Blennow K et al (2020) CSF sTREM2 and tau work together in predicting increased temporal lobe atrophy in older adults. Cereb Cortex 30:2295–2306. https://doi.org/10.1093/cercor/bhz240

    Article  PubMed  Google Scholar 

  50. Samanci B, Bilgiç B, Gelişin Ö et al (2021) TREM2 variants as a possible cause of frontotemporal dementia with distinct neuroimaging features. Eur J Neurol 28:2603–2613. https://doi.org/10.1111/ene.14908

    Article  PubMed  Google Scholar 

  51. Suárez-Calvet M, Kleinberger G, Araque Caballero MÁ et al (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8:466–476. https://doi.org/10.15252/emmm.201506123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jay TR, Hirsch AM, Broihier ML et al (2017) Disease Progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer’s disease. J Neurosci 37:637–647. https://doi.org/10.1523/JNEUROSCI.2110-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Keren-Shaul H, Spinrad A, Weiner A et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169. https://doi.org/10.1016/j.cell.2017.05.018

  54. Lue L-F, Schmitz CT, Serrano G et al (2015) TREM2 protein expression changes correlate with Alzheimer’s disease neurodegenerative pathologies in post-mortem temporal cortices. Brain Pathol 25:469–480. https://doi.org/10.1111/bpa.12190

    Article  CAS  PubMed  Google Scholar 

  55. Yang L, Zhou R, Tong Y et al (2020) Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis 140. https://doi.org/10.1016/j.nbd.2020.104814

  56. Qu L, Pan C, He S-M et al (2019) The Ras superfamily of small GTPases in non-neoplastic cerebral diseases. Front Mol Neurosci 12:121. https://doi.org/10.3389/fnmol.2019.00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo Q, Schnöder L, Hao W et al (2022) p38α-MAPK-deficient myeloid cells ameliorate symptoms and pathology of APP-transgenic Alzheimer’s disease mice. Aging Cell 21:e13679. https://doi.org/10.1111/acel.13679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hou J, Chen Y, Grajales-Reyes G, Colonna M (2022) TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol Neurodegener 17:84. https://doi.org/10.1186/s13024-022-00588-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leyns CEG, Ulrich JD, Finn MB et al (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 114:11524–11529. https://doi.org/10.1073/pnas.1710311114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Silvin A, Uderhardt S, Piot C et al (2022) Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 55:1448–1465.e6. https://doi.org/10.1016/j.immuni.2022.07.004

    Article  CAS  PubMed  Google Scholar 

  61. Deming Y, Filipello F, Cignarella F et al (2019) The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med 11:eaau2291. https://doi.org/10.1126/scitranslmed.aau2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma J, Yu J-T, Tan L (2015) MS4A cluster in Alzheimer’s disease. Mol Neurobiol 51:1240–1248. https://doi.org/10.1007/s12035-014-8800-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully thanked all the studies or consortia mentioned in the present study for providing summary-level GWAS data and expression matrix of single-nucleus transcriptome.

Funding

This work was funded by the Science and Technology Innovation 2030 Major Projects (2022ZD0211600), the National Natural Science Foundation of China (92249305, 82071201, 82071997), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), the Research Start-up Fund of Huashan Hospital (2022QD002), the Excellence 2025 Talent Cultivation Program at Fudan University (3030277001), the Shanghai Talent Development Funding for the Project (2019074), the ZHANGJIANG Lab, the Tianqiao and Chrissy Chen Institute, and the State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, Fudan University.

Author information

Authors and Affiliations

Authors

Contributions

JTY conceptualized the study and revised the manuscript. WSL, YRZ, WC, and YJG analyzed and interpreted the data. WSL and HFW prepared all the figures and tables. WSL and YRZ drafted and revised the manuscript. All authors contributed to the writing and revisions of the paper and approved the final version.

Corresponding author

Correspondence to **-Tai Yu.

Ethics declarations

Ethics Approval

The studies included in the present study have received ethics approval from the respective institutional review boards.

Consent to Participate

Informed consent was obtained from all individual participants included in the GWAS study and single-nucleus transcriptomic study used in the present study.

Consent for Publication

All data in this study were obtained from the published GWAS studies or single-nucleus transcriptomic study, and the participants had signed informed consent in the published original studies.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1222 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WS., Zhang, YR., Ge, YJ. et al. Inflammation and Brain Structure in Alzheimer’s Disease and Other Neurodegenerative Disorders: a Mendelian Randomization Study. Mol Neurobiol 61, 1593–1604 (2024). https://doi.org/10.1007/s12035-023-03648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03648-6

Keywords

Navigation