Log in

Neuroprotective Effects of a Cardioplegic Combination (Adenosine, Lidocaine, and Magnesium) in an Ischemic Stroke Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adenosine, lidocaine, and magnesium (ALM) are clinically available cardioplegic solutions. We examined the effects of low-dose ALM on ischemic stroke in cell and animal models. Cobalt chloride (CoCl2)–treated SH-SY5Y cells were used as a surrogate model to mimic oxygen–glucose deprivation conditions. The cells were incubated with different dilutions of ALM authentic solution (1.0 mM adenosine, 2.0 mM lidocaine, and5 mM MgSO4 in Earle’s balanced salt solution). At a concentration of 2.5%, ALM significantly reduced CoCl2-induced cell loss. This protective effect persisted even when ALM was administered 1 h after the insult. We used transient middle cerebral artery occlusion to investigate the therapeutic effects of ALM in vivo. Rats were randomly assigned to two groups—the experimental (ALM) and control (saline) groups—and infusion was administered during the ischemia for 1 h. The infarction area was significantly reduced in the ALM group compared with the control group (5.0% ± 2.0% vs. 23.5% ± 5.5%, p = 0.013). Neurological deficits were reduced in the ALM group compared with the control group (modified Longa score: 0 [0–1] vs. 2 [1–2], p = 0.047). This neuroprotective effect was substantiated by a reduction in the levels of various neuronal injury markers in plasma. These results demonstrate the neuroprotective effects of ALM and may provide a new therapeutic strategy for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Primers 5(1):70. https://doi.org/10.1038/s41572-019-0118-8

    Article  PubMed  Google Scholar 

  2. Matei N, Camara J, Zhang JH (2020) The next step in the treatment of stroke. Front Neurol 11:582605. https://doi.org/10.3389/fneur.2020.582605

    Article  PubMed  Google Scholar 

  3. Dobson GP, Letson HL (2016) Adenosine, lidocaine, and Mg2+ (ALM): from cardiac surgery to combat casualty care–teaching old drugs new tricks. J Trauma Acute Care Surg 80(1):135–145. https://doi.org/10.1097/TA.0000000000000881

    Article  CAS  PubMed  Google Scholar 

  4. Santa-Maria AR, Walter FR, Valkai S, Bras AR, Meszaros M, Kincses A, Klepe A, Gaspar D et al. (2019) Lidocaine turns the surface charge of biological membranes more positive and changes the permeability of blood-brain barrier culture models. Biochim Biophys Acta Biomembr 1861(9):1579–1591. https://doi.org/10.1016/j.bbamem.2019.07.008

    Article  CAS  PubMed  Google Scholar 

  5. Bynoe MS, Viret C, Yan A, Kim DG (2015) Adenosine receptor signaling: a key to opening the blood-brain door. Fluids Barriers CNS 12:20. https://doi.org/10.1186/s12987-015-0017-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Letson HL, Dobson GP (2018) Adenosine, lidocaine, and Mg2+ (ALM) resuscitation fluid protects against experimental traumatic brain injury. J Trauma Acute Care Surg 84(6):908–916. https://doi.org/10.1097/TA.0000000000001874

    Article  CAS  PubMed  Google Scholar 

  7. Vinten-Johansen J (2013) Adenosine-lidocaine-magnesium non-depolarizing cardioplegia: moving forward from bench to bedside. Int J Cardiol 166(2):537–538. https://doi.org/10.1016/j.ijcard.2012.09.193

    Article  PubMed  Google Scholar 

  8. Owen CM, Asopa S, Smart NA, King N (2020) Microplegia in cardiac surgery: systematic review and meta-analysis. J Card Surg 35(10):2737–2746. https://doi.org/10.1111/jocs.14895

    Article  PubMed  Google Scholar 

  9. Francica A, Vaccarin A, Dobson GP, Rossetti C, Gardellini J, Faggian G, Onorati F (2021) Short-term outcome of adenosine-lidocaine-magnesium polarizing cardioplegia in humans. Eur J Cardiothorac Surg. https://doi.org/10.1093/ejcts/ezab466

    Article  PubMed  Google Scholar 

  10. Granfeldt A, Letson HL, Dobson GP, Shi W, Vinten-Johansen J, Tonnesen E (2014) Adenosine, lidocaine and Mg2+ improves cardiac and pulmonary function, induces reversible hypotension and exerts anti-inflammatory effects in an endotoxemic porcine model. Crit Care 18(6):682. https://doi.org/10.1186/s13054-014-0682-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Griffin MJ, Letson HL, Dobson GP (2014) Adenosine, lidocaine and Mg2+ (ALM) induces a reversible hypotensive state, reduces lung edema and prevents coagulopathy in the rat model of polymicrobial sepsis. J Trauma Acute Care Surg 77(3):471–478. https://doi.org/10.1097/TA.0000000000000361

    Article  CAS  PubMed  Google Scholar 

  12. Conner J, Lammers D, Holtestaul T, Jones I, Kuckelman J, Letson H, Dobson G, Eckert M et al. (2021) Combatting ischemia reperfusion injury from resuscitative endovascular balloon occlusion of the aorta using adenosine, lidocaine and magnesium: a pilot study. J Trauma Acute Care Surg 91(6):995–1001. https://doi.org/10.1097/TA.0000000000003388

    Article  CAS  PubMed  Google Scholar 

  13. Gubskiy IL, Namestnikova DD, Cherkashova EA, Chekhonin VP, Baklaushev VP, Gubsky LV, Yarygin KN (2018) MRI guiding of the middle cerebral artery occlusion in rats aimed to improve stroke modeling. Transl Stroke Res 9(4):417–425. https://doi.org/10.1007/s12975-017-0590-y

    Article  CAS  PubMed  Google Scholar 

  14. Xu L, Ding L, Su Y, Shao R, Liu J, Huang Y (2019) Neuroprotective effects of curcumin against rats with focal cerebral ischemia-reperfusion injury. Int J Mol Med 43(4):1879–1887. https://doi.org/10.3892/ijmm.2019.4094

    Article  CAS  PubMed  Google Scholar 

  15. Valentim AM, Guedes SR, Pereira AM, Antunes LM (2016) Euthanasia using gaseous agents in laboratory rodents. Lab Anim 50(4):241–253. https://doi.org/10.1177/0023677215618618

    Article  CAS  PubMed  Google Scholar 

  16. Shahjouei S, Cai PY, Ansari S, Sharififar S, Azari H, Ganji S, Zand R (2016) Middle cerebral artery occlusion model of stroke in rodents: a step-by-step approach. J Vasc Interv Neurol 8(5):1–8

    PubMed  PubMed Central  Google Scholar 

  17. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  18. Yoo SY, Yoo JY, Kim HB, Baik TK, Lee JH, Woo RS (2019) Neuregulin-1 protects neuronal cells against damage due to CoCl2-induced hypoxia by suppressing hypoxia-inducible factor-1alpha and P53 in SH-SY5Y cells. Int Neurourol J 23(Suppl 2):S111-118. https://doi.org/10.5213/inj.1938190.095

    Article  PubMed  PubMed Central  Google Scholar 

  19. Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

    Article  Google Scholar 

  20. Herpich F, Rincon F (2020) Management of acute ischemic stroke. Crit Care Med 48(11):1654–1663. https://doi.org/10.1097/CCM.0000000000004597

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuczynski AM, Marzoughi S, Al Sultan AS, Colbourne F, Menon BK, van Es A, Berez AL, Goyal M et al. (2020) Therapeutic hypothermia in acute ischemic stroke-a systematic review and meta-analysis. Curr Neurol Neurosci Rep 20(5):13. https://doi.org/10.1007/s11910-020-01029-3

    Article  PubMed  Google Scholar 

  22. Kuczynski AM, Ospel JM, Demchuk AM, Goyal M, Mitha AP, Almekhlafi MA (2020) Therapeutic hypothermia in patients with malignant ischemic stroke and hemicraniectomy-a systematic review and meta-analysis. World Neurosurg 141:e677–e685. https://doi.org/10.1016/j.wneu.2020.05.277

    Article  PubMed  Google Scholar 

  23. Ma J, Ma Y, Shuaib A, Winship IR (2020) Improved collateral flow and reduced damage after remote ischemic perconditioning during distal middle cerebral artery occlusion in aged rats. Sci Rep 10(1):12392. https://doi.org/10.1038/s41598-020-69122-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yao Y, Zhang Y, Liao X, Yang R, Lei Y, Luo J (2020) Potential therapies for cerebral edema after ischemic stroke: a mini review. Front Aging Neurosci 12:618819. https://doi.org/10.3389/fnagi.2020.618819

    Article  CAS  PubMed  Google Scholar 

  25. Howell JA, Bidwell GL 3rd (2020) Targeting the NF-kappaB pathway for therapy of ischemic stroke. Ther Deliv 11(2):113–123. https://doi.org/10.4155/tde-2019-0075

    Article  CAS  PubMed  Google Scholar 

  26. Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97. https://doi.org/10.1186/1479-5876-7-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Francica A, Tonelli F, Rossetti C, Tropea I, Luciani GB, Faggian G, Dobson GP, Onorati F (2021) Cardioplegia between evolution and revolution: from depolarized to polarized cardiac arrest in adult cardiac surgery. J Clin Med 10(19). https://doi.org/10.3390/jcm10194485

  28. Caltana L, Merelli A, Lazarowski A, Brusco A (2009) Neuronal and glial alterations due to focal cortical hypoxia induced by direct cobalt chloride (CoCl2) brain injection. Neurotox Res 15(4):348–358. https://doi.org/10.1007/s12640-009-9038-9

    Article  CAS  PubMed  Google Scholar 

  29. Jones SM, Novak AE, Elliott JP (2013) The role of HIF in cobalt-induced ischemic tolerance. Neuroscience 252:420–430. https://doi.org/10.1016/j.neuroscience.2013.07.060

    Article  CAS  PubMed  Google Scholar 

  30. Tripathi VK, Subramaniyan SA, Hwang I (2019) Molecular and cellular response of co-cultured cells toward cobalt chloride (CoCl2)-induced hypoxia. ACS Omega 4(25):20882–20893. https://doi.org/10.1021/acsomega.9b01474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lopez MS, Vemuganti R (2018) Modeling transient focal ischemic stroke in rodents by intraluminal filament method of middle cerebral artery occlusion. Methods Mol Biol 1717:101–113. https://doi.org/10.1007/978-1-4939-7526-6_9

    Article  CAS  PubMed  Google Scholar 

  32. Larpthaveesarp A, Gonzalez FF (2017) Transient middle cerebral artery occlusion model of neonatal stroke in P10 rats. J Vis Exp (122). https://doi.org/10.3791/54830

  33. Liu F, McCullough LD (2014) The middle cerebral artery occlusion model of transient focal cerebral ischemia. Methods Mol Biol 1135:81–93. https://doi.org/10.1007/978-1-4939-0320-7_7

    Article  CAS  PubMed  Google Scholar 

  34. Komatsu T, Ohta H, Motegi H, Hata J, Terawaki K, Koizumi M, Muta K, Okano HJ et al. (2021) A novel model of ischemia in rats with middle cerebral artery occlusion using a microcatheter and zirconia ball under fluoroscopy. Sci Rep 11(1):12806. https://doi.org/10.1038/s41598-021-92321-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu F, McCullough LD (2011) Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol 2011:464701. https://doi.org/10.1155/2011/464701

    Article  PubMed  PubMed Central  Google Scholar 

  36. Selvamani A, Sohrabji F (2010) The neurotoxic effects of estrogen on ischemic stroke in older female rats is associated with age-dependent loss of insulin-like growth factor-1. J Neurosci 30(20):6852–6861. https://doi.org/10.1523/JNEUROSCI.0761-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vitt JR, Trillanes M, Hemphill JC 3rd (2019) Management of blood pressure during and after recanalization therapy for acute ischemic stroke. Front Neurol 10:138. https://doi.org/10.3389/fneur.2019.00138

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to Prof. Thomas Toung who helped us with the rat ischemic model; Dr.Ti-Yen Yeh, for rat randomization and plasma preparation; and Dr. John-Chun Ho, for cell model establishment.

Funding

This work was supported by the Ministry of Science and Technology in Taiwan (grant numbers 109–2314-B-002–243 and 107–2314-B-002–043-MY3).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Yi-Chia Wang performed the experiments and wrote the manuscript with support from Sung-Tsang Hsieh. Chen designed and directed the project of the oxygen–glucose deprivation model and aided in the interpretation of the results. The first draft of the manuscript was written by Yi-Chia Wang, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sung-Tsang Hsieh.

Ethics declarations

Ethics Approval

All animal experiments were performed in accordance with the animal protocol approved by the National Taiwan University College of Medicine and College of Public Health Institutional Animal Care and Use Committee (IACUC No. 20180302).

Consent to Participate

Human subjects were not involved in this study.

Consent to Publish

This manuscript does not contain individual person’s data.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YC., Chen, YS. & Hsieh, ST. Neuroprotective Effects of a Cardioplegic Combination (Adenosine, Lidocaine, and Magnesium) in an Ischemic Stroke Model. Mol Neurobiol 59, 7045–7055 (2022). https://doi.org/10.1007/s12035-022-03020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03020-0

Keywords

Navigation