Log in

Small Molecule Screening Discovers Compounds that Reduce FMRpolyG Protein Aggregates and Splicing Defect Toxicity in Fragile X-Associated Tremor/Ataxia Syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Expansion of CGG trinucleotide repeats in 5′ untranslated region of the FMR1 gene is the causative mutation of neurological diseases such as fragile X syndrome (FXS), fragile X-associated tremor/ataxia syndrome (FXTAS), and ovarian disorder such as fragile X-associated primary ovarian insufficiency (FXPOI). CGG repeats containing FMR1 transcripts form the toxic ribonuclear aggregates, abrupt pre-mRNA splicing, and cause repeat-associated non-AUG translation, leading to the disease symptoms. Here, we utilized a small molecule library of ~ 250,000 members obtained from the National Cancer Institute (NCI) and implemented a shape-based screening approach to identify the candidate small molecules that mitigate toxic CGG RNA-mediated pathogenesis. The compounds obtained from screening were further assessed for their affinity and selectivity towards toxic CGG repeat RNA by employing fluorescence-binding experiment and isothermal calorimetry titration assay. Three candidate molecules B1, B4, and B11 showed high affinity and selectivity for expanded CGG repeats RNA. Further, NMR spectroscopy, gel mobility shift assay, CD spectroscopy, UV–thermal denaturation assay, and molecular docking affirmed their high affinity and selectivity for toxic CGG RNAs. Next, these lead compounds selectively improved the pre-mRNA alternative splicing defects with no perturbation in global splicing efficacy and simultaneously reduced the FMR1polyG protein aggregate formation without affecting the downstream expression of the gene. Taken together these findings, we addressed compound B1, B4, and B11 as potential lead molecules for develo** promising therapeutics against FXTAS. Herein, this study, we have utilized shape similarity approach to screen the NCI library and found out the potential candidate which improves the pre-mRNA splicing defects and reduces FMR1polyG aggregations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The authors agreed to provide raw data files and materials that support findings in the study.

References

  1. Robertson MP, Joyce GF (2012) The origins of the RNA world. Cold Spring Harb Perspect Biol 4(5):a003608. https://doi.org/10.1101/cshperspect.a003608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharp PA (2009) The centrality of RNA. Cell 136(4):577–580. https://doi.org/10.1016/j.cell.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  3. Verma AK, Khan E, Bhagwat SR, Kumar A (2019) Exploring the potential of small molecule-based therapeutic approaches for targeting trinucleotide repeat disorders. Mol Neurobiol. https://doi.org/10.1007/s12035-019-01724-4

    Article  PubMed  Google Scholar 

  4. Warner KD, Hajdin CE, Weeks KM (2018) Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discovery 17(8):547–558. https://doi.org/10.1038/nrd.2018.93

    Article  CAS  PubMed  Google Scholar 

  5. Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, Kozlowski P (2012) Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 40(1):11–26. https://doi.org/10.1093/nar/gkr729

    Article  CAS  PubMed  Google Scholar 

  6. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621. https://doi.org/10.1146/annurev.neuro.29.051605.113042

    Article  CAS  PubMed  Google Scholar 

  7. LaCroix AJ, Stabley D, Sahraoui R, Adam MP, Mehaffey M, Kernan K, Myers CT, Fagerstrom C et al (2019) GGC repeat expansion and exon 1 methylation of XYLT1 is a common pathogenic variant in Baratela-Scott syndrome. Am J Hum Genet 104(1):35-44. https://doi.org/10.1016/j.ajhg.2018.11.005

  8. Hoem G, Raske CR, Garcia-Arocena D, Tassone F, Sanchez E, Ludwig AL, Iwahashi CK, Kumar M et al.  (2011) CGG-repeat length threshold for FMR1 RNA pathogenesis in a cellular model for FXTAS. Hum Mol Genet 20(11):2161–2170. https://doi.org/10.1093/hmg/ddr101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Juncos JL, Lazarus JT, Graves-Allen E, Shubeck L, Rusin M, Novak G, Hamilton D, Rohr J,  et al (2011) New clinical findings in the fragile X-associated tremor ataxia syndrome (FXTAS). Neurogenetics 12(2):123–135. https://doi.org/10.1007/s10048-010-0270-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Budworth H, McMurray CT (2013) A brief history of triplet repeat diseases. In: Kohwi Y, McMurray CT (eds) Trinucleotide Repeat Protocols. Humana Press, Totowa, NJ, pp 3–17. doi:https://doi.org/10.1007/978-1-62703-411-1_1

  11. Wenzel HJ, Hunsaker MR, Greco CM, Willemsen R, Berman RF (2010) Ubiquitin-positive intranuclear inclusions in neuronal and glial cells in a mouse model of the fragile X premutation. Brain Res 1318:155–166. https://doi.org/10.1016/j.brainres.2009.12.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garcia-Arocena D, Hagerman PJ (2010) Advances in understanding the molecular basis of FXTAS. Hum Mol Genet 19(R1):R83-89. https://doi.org/10.1093/hmg/ddq166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sellier C, Freyermuth F, Tabet R, Tran T, He F, Ruffenach F, Alunni V, Moine H, et al (2013) Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep 3(3):869–880. https://doi.org/10.1016/j.celrep.2013.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sellier C, Rau F, Liu Y, Tassone F, Hukema RK, Gattoni R, Schneider A, Richard S, et al (2010) Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J 29(7):1248–1261. https://doi.org/10.1038/emboj.2010.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sofola OA, ** P, Qin Y, Duan R, Liu H, de Haro M, Nelson DL, Botas J (2007) RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55(4):565–571. https://doi.org/10.1016/j.neuron.2007.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. ** P, Duan R, Qurashi A, Qin Y, Tian D, Rosser TC, Liu H, Feng Y et al (2007) Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55(4):556–564. https://doi.org/10.1016/j.neuron.2007.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Todd PK, Oh SY, Krans A, He F, Sellier C, Frazer M, Renoux AJ, Chen KC, et al. (2013) CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78(3):440–455. https://doi.org/10.1016/j.neuron.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  18. Sellier C, Buijsen RAM, He F, Natla S, Jung L, Tropel P, Gaucherot A, Jacobs H, Meziane H, Vincent A, Champy M-F, Sorg T, Pavlovic G, Wattenhofer-Donze M, Birling M-C, Oulad-Abdelghani M, Eberling P, Ruffenach F, Joint M, Anheim M, Martinez-Cerdeno V, Tassone F, Willemsen R, Hukema RK, Viville S, Martinat C, Todd PK, Charlet-Berguerand N (2017) Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome. Neuron 93(2):331–347. https://doi.org/10.1016/j.neuron.2016.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Evers MM, Toonen LJA, van Roon-Mom WMC (2015) Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 87:90–103. https://doi.org/10.1016/j.addr.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  20. Kumar A, Zhang KYJ (2018) Advances in the development of shape similarity methods and their application in drug discovery. Front Chem 6:315–315. https://doi.org/10.3389/fchem.2018.00315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar A, Parkesh R, Sznajder LJ, Childs-Disney JL, Sobczak K, Disney MD (2012) Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts. ACS Chem Biol 7(3):496–505. https://doi.org/10.1021/cb200413a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan E, Mishra SK, Mishra R, Mishra A, Kumar A (2019) Discovery of a potent small molecule inhibiting Huntington’s disease (HD) pathogenesis via targeting CAG repeats RNA and Poly Q protein. Sci Rep 9(1):16872. https://doi.org/10.1038/s41598-019-53410-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan E, Tawani A, Mishra SK, Verma AK, Upadhyay A, Kumar M, Sandhir R, Mishra A et al (2018) Myricetin reduces toxic level of CAG repeats RNA in Huntington’s disease (HD) and spinocerebellar ataxia (SCAs). 13 (1):180–188. doi:https://doi.org/10.1021/acschembio.7b00699

  24. Khan E, Biswas S, Mishra SK, Mishra R, Samanta S, Mishra A, Tawani A, Kumar A (2019) Rationally designed small molecules targeting toxic CAG repeat RNA that causes Huntington’s disease (HD) and spinocerebellar ataxia (SCAs). Biochimie 163:21–32. https://doi.org/10.1016/j.biochi.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  25. Disney MD, Liu B, Yang WY, Sellier C, Tran T, Charlet-Berguerand N, Childs-Disney JL (2012) A small molecule that targets r(CGG)(exp) and improves defects in fragile X-associated tremor ataxia syndrome. ACS Chem Biol 7(10):1711–1718. https://doi.org/10.1021/cb300135h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang WY, Wilson HD, Velagapudi SP, Disney MD (2015) Inhibition of non-ATG translational events in cells via covalent small molecules targeting RNA. J Am Chem Soc 137(16):5336–5345. https://doi.org/10.1021/ja507448y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang WY, He F, Strack RL, Oh SY, Frazer M, Jaffrey SR, Todd PK, Disney MD (2016) Small molecule recognition and tools to study modulation of r(CGG)(exp) in fragile X-associated tremor ataxia syndrome. ACS Chem Biol 11(9):2456–2465. https://doi.org/10.1021/acschembio.6b00147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haify SN, Buijsen RAM, Verwegen L, Severijnen L-AWFM, de Boer H, Boumeester V, Monshouwer R, Yang WY et al (2021) Small molecule 1a reduces FMRpolyG-mediated toxicity in in vitro and in vivo models for FMR1 premutation. Hum Mol Genet 30(17):1632–1648. https://doi.org/10.1093/hmg/ddab143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tran T, Childs-Disney JL, Liu B, Guan L, Rzuczek S, Disney MD (2014) Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides. ACS Chem Biol 9(4):904–912. https://doi.org/10.1021/cb400875u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Verma AK, Khan E, Mishra SK, Jain N, Kumar A (2019) Piperine modulates protein mediated toxicity in fragile X-associated tremor/ataxia syndrome through interacting expanded CGG repeat (r(CGG)(exp)) RNA. doi:https://doi.org/10.1021/acschemneuro.9b00282

  31. Parkesh R, Childs-Disney JL, Nakamori M, Kumar A, Wang E, Wang T, Hoskins J, Tran T et al (2012) Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching. J Am Chem Soc 134(10):4731–4742. https://doi.org/10.1021/ja210088v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoskins JW, Ofori LO, Chen CZ, Kumar A, Sobczak K, Nakamori M, Southall N, Patnaik S et al (2014) Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects. Nucleic Acids Res 42(10):6591–6602. https://doi.org/10.1093/nar/gku275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Childs-Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD (2012) Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. ACS Chem Biol 7(5):856–862. https://doi.org/10.1021/cb200408a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Childs-Disney JL, Stepniak-Konieczna E, Tran T, Yildirim I, Park H, Chen CZ, Hoskins J, Southall N et al (2013) Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nat Commun 4:2044. https://doi.org/10.1038/ncomms3044

    Article  CAS  PubMed  Google Scholar 

  35. Pinto IG, Guilbert C, Ulyanov NB, Stearns J, James TL (2008) Discovery of ligands for a novel target, the human telomerase RNA, based on flexible-target virtual screening and NMR. J Med Chem 51(22):7205–7215. https://doi.org/10.1021/jm800825n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yap HY, Yap BS, Blumenschein GR, Barnes BC, Schell FC, Bodey GP (1983) Bisantrene, an active new drug in the treatment of metastatic breast cancer. Can Res 43(3):1402–1404

    CAS  Google Scholar 

  37. Cowan JD, Neidhart J, McClure S, Coltman CA Jr, Gumbart C, Martino S, Hutchins LF, Stephens RL et al (1991) Randomized trial of doxorubicin, bisantrene, and mitoxantrone in advanced breast cancer: a Southwest Oncology Group study. J Natl Cancer Inst 83(15):1077–1084. https://doi.org/10.1093/jnci/83.15.1077

    Article  CAS  PubMed  Google Scholar 

  38. Haigh JA, Pickup BT, Grant JA, Nicholls A (2005) Small molecule shape-fingerprints. J Chem Inf Model 45(3):673–684. https://doi.org/10.1021/ci049651v

    Article  CAS  PubMed  Google Scholar 

  39. Grant JA, Gallardo MA, Pickup BT (1996) A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. J Comput Chem 17(14):1653–1666. https://doi.org/10.1002/(sici)1096-987x(19961115)17:14%3c1653::aid-jcc7%3e3.0.co;2-k

    Article  CAS  Google Scholar 

  40. Bostrom J, Greenwood JR, Gottfries J (2003) Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J Mol Graph Model 21(5):449–462

    Article  CAS  Google Scholar 

  41. Mills JE, Dean PM (1996) Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. J Comput Aided Mol Des 10(6):607–622

    Article  Google Scholar 

  42. Salim NN, Feig AL (2009) Isothermal titration calorimetry of RNA. Methods 47(3):198–205. https://doi.org/10.1016/j.ymeth.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  43. Mishra SK, Jain N, Shankar U, Tawani A, Sharma TK, Kumar A (2019) Characterization of highly conserved G-quadruplex motifs as potential drug targets in Streptococcus pneumoniae. Sci Rep 9(1):1791. https://doi.org/10.1038/s41598-018-38400-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feig AL (2007) Applications of isothermal titration calorimetry in RNA biochemistry and biophysics. Biopolymers 87(5–6):293–301. https://doi.org/10.1002/bip.20816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ren J, Jenkins TC, Chaires JB (2000) Energetics of DNA intercalation reactions. Biochemistry 39(29):8439–8447. https://doi.org/10.1021/bi000474a

    Article  CAS  PubMed  Google Scholar 

  46. Tse WC, Boger DL (2004) Sequence-selective DNA recognition: natural products and nature’s lessons. Chem Biol 11(12):1607–1617. https://doi.org/10.1016/j.chembiol.2003.08.012

    Article  CAS  PubMed  Google Scholar 

  47. Chang Y-M, Chen CKM, Hou M-H (2012) Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int J Mol Sci 13(3):3394–3413. https://doi.org/10.3390/ijms13033394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kypr J, Kejnovská I, Renciuk D, Vorlícková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725. https://doi.org/10.1093/nar/gkp026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar A, Fang P, Park H, Guo M, Nettles KW, Disney MD (2011) A crystal structure of a model of the repeating r(CGG) transcript found in fragile × syndrome. ChemBioChem 12(14):2140–2142. https://doi.org/10.1002/cbic.201100337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Das A, Bhadra K, Suresh Kumar G (2011) Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-beta-D-glucoside and daunomycin binding to tRNA(phe). PLoS ONE 6(8):e23186. https://doi.org/10.1371/journal.pone.0023186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hossain M, Giri P, Kumar GS (2008) DNA intercalation by quinacrine and methylene blue: a comparative binding and thermodynamic characterization study. DNA Cell Biol 27(2):81–90. https://doi.org/10.1089/dna.2007.0652

    Article  CAS  PubMed  Google Scholar 

  52. Khan E, Biswas S, Mishra SK, Mishra R, Samanta S, Mishra A, Tawani A, Kumar A (2019) Rationally designed small molecules targeting toxic CAG repeat RNA that causes Huntington’s disease (HD) and spinocerebellar ataxia (SCAs). Biochimie. https://doi.org/10.1016/j.biochi.2019.05.001

    Article  PubMed  Google Scholar 

  53. Nguyen B, Wilson WD (2009) The effects of hairpin loops on ligand-DNA interactions. J Phys Chem B 113(43):14329–14335. https://doi.org/10.1021/jp904830m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Verma AK, Khan E, Mishra SK, Mishra A, Charlet-Berguerand N, Kumar A (2020) Curcumin Regulates the r(CGG)(exp) RNA hairpin structure and ameliorate defects in fragile X-associated tremor ataxia syndrome. Front Neurosci 14:295. https://doi.org/10.3389/fnins.2020.00295

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tawani A, Amanullah A, Mishra A, Kumar A (2016) Evidences for piperine inhibiting cancer by targeting human G-quadruplex DNA sequences. Sci Rep 6:39239. https://doi.org/10.1038/srep39239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tawani A, Kumar A (2015) Structural insight into the interaction of flavonoids with human telomeric sequence. Sci Rep 5:17574. https://doi.org/10.1038/srep17574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tawani A, Kumar A (2015) Structural insights reveal the dynamics of the repeating r(CAG) transcript found in Huntington’s disease (HD) and spinocerebellar ataxias (SCAs). PLoS ONE 10(7):e0131788. https://doi.org/10.1371/journal.pone.0131788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oliva R, Cavallo L, Tramontano A (2006) Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions. Nucleic Acids Res 34(3):865–879. https://doi.org/10.1093/nar/gkj491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang ZF, Ursu A, Childs-Disney JL, Guertler R, Yang WY, Bernat V, Rzuczek SG, Fuerst R et al (2019) The hairpin form of r(G4C2)(exp) in c9ALS/FTD is repeat-associated non-ATG translated and a target for bioactive small molecules. Cell Chem Biol 26(2):179-190.e112. https://doi.org/10.1016/j.chembiol.2018.10.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Sophisticated Instrumentation Facility at IIT Indore for NMR and CD experiments. We sincerely thank Nicolas Charlet Berguerand (Department of Translational Medicine, IGBMC, Illkirch 67400, France) for providing pcDNA3 (CGG)20x, pcDNA3 (CGG)40x, pcDNA3 (CGG)60x, 5′UTR FMR1 (CGG)99x-EGFP, SMN2, Bcl-x, and cTNT minigenes.

Funding

This work was supported and funding provided by the [DST/FT/LS29/2012] Government of India. AKV and EK are thankful to DBT, New Delhi, and SKM thankful to CSIR, New Delhi, for fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AK conceptualized the idea. AK and AKV designed the experiments. Biophysical and cell-based experiments were performed by AV. EK and SKM performed the shape-based molecule screening and helped in experiments. AKV and AK analyzed the data and wrote the manuscript. AK, EK, and SKM edited and also improved the manuscript.

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Informed Consent

Not applicable.

Consent for Publication

Authors give their consent for the publication.

Research Involving Human Participants and/or Animals

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2785 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A.K., Khan, E., Mishra, S.K. et al. Small Molecule Screening Discovers Compounds that Reduce FMRpolyG Protein Aggregates and Splicing Defect Toxicity in Fragile X-Associated Tremor/Ataxia Syndrome. Mol Neurobiol 59, 1992–2007 (2022). https://doi.org/10.1007/s12035-021-02697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02697-z

Keywords

Navigation