Log in

Acid-Sensing Ion Channels Contribute to Type III Adenylyl Cyclase–Independent Acid Sensing of Mouse Olfactory Sensory Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acids can disturb the ecosystem of wild animals through altering their olfaction and olfaction-related survival behaviors. It is known that the main olfactory epithelia (MOE) of mammals rely on odorant receptors and type III adenylyl cyclase (AC3) to detect general odorants. However, it is unknown how the olfactory system sense protons or acidic odorants. Here, we show that while the MOE of AC3 knockout (KO) mice failed to respond to an odor mix in electro-olfactogram (EOG) recordings, it retained a small fraction of acid-evoked EOG responses. The acetic acid–induced EOG responses in wild-type (WT) MOE can be dissected into two components: the big component dependent on the AC3-mediated cAMP pathway and the much smaller component not. The small acid-evoked EOG response of the AC3 KOs was blocked by diminazene, an inhibitor of acid-sensing ion channels (ASICs), but not by forskolin/IBMX that desensitize the cAMP pathway. AC3 KO mice lost their sensitivity to detect pungent odorants but maintained sniffing behavior to acetic acid. Immunofluorescence staining demonstrated that ASIC1 proteins were highly expressed in olfactory sensory neurons (OSNs), mostly enriched in the knobs, dendrites, and somata, but not in olfactory cilia. Real-time polymerase chain reaction further detected the mRNA expression of ASIC1a, ASIC2b, and ASIC3 in the MOE. Additionally, mice exhibited reduced preference to attractive objects when placed in an environment with acidic volatiles. Together, we conclude that the mouse olfactory system has a non-conventional, likely ASIC-mediated ionotropic mechanism for acid sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Porteus CS, Hubbard PC, Uren Webster TM, van Aerle R, Canário AVM, Santos EM, Wilson RW (2018) Near-future CO2 levels impair the olfactory system of a marine fish. Nat Clim Chang 8(8):737–743. https://doi.org/10.1038/s41558-018-0224-8

    Article  CAS  Google Scholar 

  2. Raji JI, Melo N, Castillo JS, Gonzalez S, Saldana V, Stensmyr MC, DeGennaro M (2019) Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Curr Biol 29(8):1253–1262.e1257. https://doi.org/10.1016/j.cub.2019.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Semmelhack JL, Wang JW (2009) Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459(7244):218–223. https://doi.org/10.1038/nature07983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Williams CR, Dittman AH, McElhany P, Busch DS, Maher MT, Bammler TK, MacDonald JW, Gallagher EP (2019) Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). Glob Chang Biol 25(3):963–977. https://doi.org/10.1111/gcb.14532

    Article  PubMed  Google Scholar 

  5. Jouandet GC, Gallio M (2015) Catching more flies with vinegar. Elife 4. https://doi.org/10.7554/eLife.10535

  6. Dalton P, Dilks D, Hummel T (2006) Effects of long-term exposure to volatile irritants on sensory thresholds, negative mucosal potentials, and event-related potentials. Behav Neurosci 120(1):180–187. https://doi.org/10.1037/0735-7044.120.1.180

    Article  CAS  PubMed  Google Scholar 

  7. Anholt RR (1993) Molecular neurobiology of olfaction. Crit Rev Neurobiol 7(1):1–22

    CAS  PubMed  Google Scholar 

  8. Malaty J, Malaty IA (2013) Smell and taste disorders in primary care. Am Fam Physician 88(12):852–859

    PubMed  Google Scholar 

  9. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187. https://doi.org/10.1016/0092-8674(91)90418-x

    Article  CAS  PubMed  Google Scholar 

  10. Jones DT, Masters SB, Bourne HR, Reed RR (1990) Biochemical characterization of three stimulatory GTP-binding proteins. The large and small forms of Gs and the olfactory-specific G-protein, Golf. J Biol Chem 265(5):2671–2676

    CAS  PubMed  Google Scholar 

  11. Schandar M, Laugwitz KL, Boekhoff I, Kroner C, Gudermann T, Schultz G, Breer H (1998) Odorants selectively activate distinct G protein subtypes in olfactory cilia. J Biol Chem 273(27):16669–16677. https://doi.org/10.1074/jbc.273.27.16669

    Article  CAS  PubMed  Google Scholar 

  12. Wong ST, Trinh K, Hacker B, Chan GC, Lowe G, Gaggar A, **a Z, Gold GH et al (2000) Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27(3):487–497

    Article  CAS  PubMed  Google Scholar 

  13. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82(3):769–824. https://doi.org/10.1152/physrev.00008.2002

    Article  CAS  PubMed  Google Scholar 

  14. Kleene SJ (2008) The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 33(9):839–859. https://doi.org/10.1093/chemse/bjn048

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325(6103):442–444. https://doi.org/10.1038/325442a0

    Article  CAS  PubMed  Google Scholar 

  16. Qiu L, LeBel RP, Storm DR, Chen X (2016) Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. Int J Physiol Pathophysiol Pharmacol 8(3):95–108

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ai M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, Suh GS (2010) Acid sensing by the Drosophila olfactory system. Nature 468(7324):691–695. https://doi.org/10.1038/nature09537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Silbering AF, Benton R (2010) Ionotropic and metabotropic mechanisms in chemoreception: ‘chance or design’? EMBO Rep 11(3):173–179. https://doi.org/10.1038/embor.2010.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386(6621):173–177. https://doi.org/10.1038/386173a0

    Article  CAS  PubMed  Google Scholar 

  20. Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 14(7):461–471. https://doi.org/10.1038/nrn3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grunder S, Chen X (2010) Structure, function, and pharmacology of acid-sensing ion channels (ASICs): focus on ASIC1a. Int J Physiol Pathophysiol Pharmacol 2(2):73–94

    PubMed  PubMed Central  Google Scholar 

  22. Chen X, Orser BA, MacDonald JF (2010) Design and screening of ASIC inhibitors based on aromatic diamidines for combating neurological disorders. Eur J Pharmacol 648(1–3):15–23. https://doi.org/10.1016/j.ejphar.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  23. Saraiva LR, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P, Marioni JC, Logan DW (2015) Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep 5:18178. https://doi.org/10.1038/srep18178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Zhou Y, Luo Y, Zhang J, Zhai Y, Yang D, Zhang Z, Li Y et al (2015) Gene expression profiles of main olfactory epithelium in adenylyl cyclase 3 knockout mice. Int J Mol Sci 16(12):28320–28333. https://doi.org/10.3390/ijms161226107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vann KT, **ong ZG (2018) Acid-sensing ion channel 1 contributes to normal olfactory function. Behav Brain Res 337:246–251. https://doi.org/10.1016/j.bbr.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Qiu L, Li M, Durrnagel S, Orser BA, **ong ZG, MacDonald JF (2010) Diarylamidines: high potency inhibitors of acid-sensing ion channels. Neuropharmacology 58(7):1045–1053. https://doi.org/10.1016/j.neuropharm.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  27. Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A 106(28):11776–11781. https://doi.org/10.1073/pnas.0903304106

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen X, **a Z, Storm DR (2012) Stimulation of electro-olfactogram responses in the main olfactory epithelia by airflow depends on the type 3 adenylyl cyclase. J Neurosci 32(45):15769–15778. https://doi.org/10.1523/jneurosci.2180-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schoenfeld TA, Cleland TA (2005) The anatomical logic of smell. Trends Neurosci 28(11):620–627. https://doi.org/10.1016/j.tins.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Kalbacher H, Grunder S (2005) The tarantula toxin psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity. J Gen Physiol 126(1):71–79. https://doi.org/10.1085/jgp.200509303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen X, Polleichtner G, Kadurin I, Grunder S (2007) Zebrafish acid-sensing ion channel (ASIC) 4, characterization of homo- and heteromeric channels, and identification of regions important for activation by H+. J Biol Chem 282(42):30406–30413. https://doi.org/10.1074/jbc.M702229200

    Article  CAS  PubMed  Google Scholar 

  32. Bassler EL, Ngo-Anh TJ, Geisler HS, Ruppersberg JP, Grunder S (2001) Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem 276(36):33782–33787. https://doi.org/10.1074/jbc.M104030200

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt A, Rossetti G, Joussen S, Grunder S (2017) Diminazene is a slow pore blocker of acid-sensing ion channel 1a (ASIC1a). Mol Pharmacol 92(6):665–675. https://doi.org/10.1124/mol.117.110064

    Article  CAS  PubMed  Google Scholar 

  34. Bohlen CJ, Julius D (2012) Receptor-targeting mechanisms of pain-causing toxins: How ow? Toxicon 60(3):254–264. https://doi.org/10.1016/j.toxicon.2012.04.336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hesselager M, Timmermann DB, Ahring PK (2004) pH dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J Biol Chem 279(12):11006–11015. https://doi.org/10.1074/jbc.M313507200

    Article  CAS  PubMed  Google Scholar 

  36. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449(7160):316–323. https://doi.org/10.1038/nature06163

    Article  CAS  PubMed  Google Scholar 

  37. Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA et al (2009) The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64(6):885–897. https://doi.org/10.1016/j.neuron.2009.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pellegrino M, Nakagawa T (2009) Smelling the difference: controversial ideas in insect olfaction. J Exp Biol 212(Pt 13):1973–1979. https://doi.org/10.1242/jeb.023036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spehr M, Munger SD (2009) Olfactory receptors: G protein-coupled receptors and beyond. J Neurochem 109(6):1570–1583. https://doi.org/10.1111/j.1471-4159.2009.06085.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332. https://doi.org/10.1146/annurev.physiol.010908.163209

    Article  CAS  PubMed  Google Scholar 

  41. Ai M, Blais S, Park JY, Min S, Neubert TA, Suh GS (2013) Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. J Neurosci 33(26):10741–10749. https://doi.org/10.1523/jneurosci.5419-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holzer P (2009) Acid-sensitive ion channels and receptors. Handb Exp Pharmacol 194:283–332. https://doi.org/10.1007/978-3-540-79090-7_9

    Article  CAS  Google Scholar 

  43. Vina E, Parisi V, Abbate F, Cabo R, Guerrera MC, Laura R, Quiros LM, Perez-Varela JC et al (2015) Acid-sensing ion channel 2 (ASIC2) is selectively localized in the cilia of the non-sensory olfactory epithelium of adult zebrafish. Histochem Cell Biol 143(1):59–68. https://doi.org/10.1007/s00418-014-1264-4

    Article  CAS  PubMed  Google Scholar 

  44. Ressler KJ, Sullivan SL, Buck LB (1994) Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79(7):1245–1255. https://doi.org/10.1016/0092-8674(94)90015-9

    Article  CAS  PubMed  Google Scholar 

  45. Reeh PW, Kress M (2001) Molecular physiology of proton transduction in nociceptors. Curr Opin Pharmacol 1(1):45–51

    Article  CAS  PubMed  Google Scholar 

  46. Wang S, Wu BX, Liu CY, Qin GC, Yan WH, Zhou JY, Chen LX (2018) Expression of ASIC3 in the trigeminal nucleus caudalis plays a role in a rat model of recurrent migraine. J Mol Neurosci 66(1):44–52. https://doi.org/10.1007/s12031-018-1113-3

    Article  CAS  PubMed  Google Scholar 

  47. Secundo L, Snitz K, Sobel N (2014) The perceptual logic of smell. Curr Opin Neurobiol 25:107–115. https://doi.org/10.1016/j.conb.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  48. Maresh A, Rodriguez Gil D, Whitman MC, Greer CA (2008) Principles of glomerular organization in the human olfactory bulb--implications for odor processing. PLoS One 3(7):e2640. https://doi.org/10.1371/journal.pone.0002640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang X, Zhang X, Firestein S (2007) Comparative genomics of odorant and pheromone receptor genes in rodents. Genomics 89(4):441–450. https://doi.org/10.1016/j.ygeno.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  50. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87(4):675–686. https://doi.org/10.1016/s0092-8674(00)81387-2

    Article  CAS  PubMed  Google Scholar 

  51. Vassar R, Chao SK, Sitcheran R, Nunez JM, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79(6):981–991. https://doi.org/10.1016/0092-8674(94)90029-9

    Article  CAS  PubMed  Google Scholar 

  52. Dron MY, Zhigulin AS, Barygin OI (2019) Mechanisms of NMDA receptor inhibition by diarylamidine compounds. Eur J Neurosci 51:1573–1582. https://doi.org/10.1111/ejn.14589

    Article  PubMed  Google Scholar 

  53. Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, Debayle D, Friend V et al (2012) Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490(7421):552–555. https://doi.org/10.1038/nature11494

    Article  CAS  PubMed  Google Scholar 

  54. Salinas M, Besson T, Delettre Q, Diochot S, Boulakirba S, Douguet D, Lingueglia E (2014) Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a. J Biol Chem 289(19):13363–13373. https://doi.org/10.1074/jbc.M114.561076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen X, Kalbacher H, Grunder S (2006) Interaction of acid-sensing ion channel (ASIC) 1 with the tarantula toxin psalmotoxin 1 is state dependent. J Gen Physiol 127(3):267–276. https://doi.org/10.1085/jgp.200509409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, Menez A et al (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 275(33):25116–25121. https://doi.org/10.1074/jbc.M003643200

    Article  CAS  PubMed  Google Scholar 

  57. Mobley AS, Miller AM, Araneda RC, Maurer LR, Muller F, Greer CA (2010) Hyperpolarization-activated cyclic nucleotide-gated channels in olfactory sensory neurons regulate axon extension and glomerular formation. J Neurosci 30(49):16498–16508. https://doi.org/10.1523/JNEUROSCI.4225-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim YH, Holt JR (2013) Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear. J Gen Physiol 142(3):207–223. https://doi.org/10.1085/jgp.201311019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen X, **a Z, Storm DR (2013) Electroolfactogram (EOG) recording in the mouse main olfactory epithelium. Bio-Protocol 3(11). https://doi.org/10.21769/bioprotoc.789

  60. Scott JW, Scott-Johnson PE (2002) The electroolfactogram: a review of its history and uses. Microsc Res Tech 58(3):152–160. https://doi.org/10.1002/jemt.10133

    Article  PubMed  Google Scholar 

  61. Cygnar KD, Stephan AB, Zhao H (2010) Analyzing responses of mouse olfactory sensory neurons using the air-phase electroolfactogram recording. J Vis Exp 37. https://doi.org/10.3791/1850

  62. Chen X, Luo J, Leng Y, Yang Y, Zweifel LS, Palmiter RD, Storm DR (2016) Ablation of type III adenylyl cyclase in mice causes reduced neuronal activity, altered sleep pattern, and depression-like phenotypes. Biol Psychiatry 80(11):836–848. https://doi.org/10.1016/j.biopsych.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  63. Mackay-Sim A, Kittel PW (1991) On the life span of olfactory receptor neurons. Eur J Neurosci 3(3):209–215

    Article  PubMed  Google Scholar 

  64. Wu J, Xu Y, Jiang YQ, Xu J, Hu Y, Zha XM (2016) ASIC subunit ratio and differential surface trafficking in the brain. Mol Brain 9:4. https://doi.org/10.1186/s13041-016-0185-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ortega-Ramirez A, Vega R, Soto E (2017) Acid-sensing ion channels as potential therapeutic targets in neurodegeneration and neuroinflammation. Mediat Inflamm 2017:3728096–3728018. https://doi.org/10.1155/2017/3728096

    Article  CAS  Google Scholar 

  66. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Daniel Storm at the University of Washington, who provided resources for completing part of the experiments. We thank Dr. Rick Cote and the members of the Chen Laboratory for their critical review of the manuscript, and Dr. Tao Wang for preparing ASIC1 wild-type and knockout samples.

Funding

This study was supported by National Institutes of Health Grants MH105746, AG054729 and GM113131 to X.C.; the Cole Neuroscience and Behavioral Faculty Research Awards to X.C.; and UNH Summer TA Research Fellowships to J.Y and M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanmao Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Qiu, L., Strobel, M. et al. Acid-Sensing Ion Channels Contribute to Type III Adenylyl Cyclase–Independent Acid Sensing of Mouse Olfactory Sensory Neurons. Mol Neurobiol 57, 3042–3056 (2020). https://doi.org/10.1007/s12035-020-01943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01943-0

Keywords

Navigation