Log in

TDP-43 and Cytoskeletal Proteins in ALS

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) represents a rapidly progressing neurodegenerative disease and is characterized by a degeneration of motor neurons. Motor neurons are particularly susceptible to selective and early degeneration because of their extended axon length and their dependency on the cytoskeleton for its stability, signaling, and axonal transport. The motor neuron cytoskeleton comprises actin filaments, neurofilaments like peripherin, and microtubules. The Transactivating Response Region (TAR) DNA Binding Protein (TDP-43) forms characteristic cytoplasmic aggregates in motor neurons of ALS patients, and at least in part, the pathogenesis of ALS seems to be driven by toxic pTDP-43 aggregates in cytoplasm, which lead to a diminished axon formation and reduced axon length. Diminished axon formation and reduced axon length suggest an interaction of TDP-43 with the cytoskeleton of motor neurons. TDP-43 interacts with several cytoskeletal components, e.g., the microtubule-associated protein 1B (MAP1B) or the neurofilament light chain (NFL) through direct binding to its RNA. From a clinical perspective, cytoskeletal biomarkers like phosphorylated neurofilament heavy chain (pNFH) and NFL are already clinically used in ALS patients to predict survival, disease progression, and duration. Thus, in this review, we focus on the interaction of TDP-43 with the different cytoskeleton components such as actin filaments, neurofilaments, and microtubules as well as their associated proteins as one aspect in the complex pathogenesis of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Morgan S, Orrell RW (2016) Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull. doi:10.1093/bmb/ldw026

  2. Brettschneider J, Arai K, Del Tredici K, Toledo JB, Robinson JL, Lee EB, Kuwabara S, Shibuya K et al (2014) TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 128(3):423–437. doi:10.1007/s00401-014-1299-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM, Li D, Thal DR et al (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211(4):897–911. doi:10.1083/jcb.201504057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spiller KJ, Cheung CJ, Restrepo CR, Kwong LK, Stieber AM, Trojanowski JQ, Lee VM (2016) Selective motor neuron resistance and recovery in a new inducible mouse model of TDP-43 proteinopathy. J Neurosci 36(29):7707–7717. doi:10.1523/JNEUROSCI.1457-16.2016

    Article  CAS  PubMed  Google Scholar 

  5. Gershoni-Emek N, Chein M, Gluska S, Perlson E (2015) Amyotrophic lateral sclerosis as a spatiotemporal mislocalization disease: location, location, location. Int Rev Cell Mol Biol 315:23–71. doi:10.1016/bs.ircmb.2014.11.003

    Article  PubMed  Google Scholar 

  6. Baldwin KR, Godena VK, Hewitt VL, Whitworth AJ (2016) Axonal transport defects are a common phenotype in Drosophila models of ALS. Hum Mol Genet. doi:10.1093/hmg/ddw105

    PubMed  PubMed Central  Google Scholar 

  7. Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14(4):248–264. doi:10.1038/nrn3430

    Article  CAS  PubMed  Google Scholar 

  8. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611. doi:10.1016/j.bbrc.2006.10.093

    Article  CAS  PubMed  Google Scholar 

  9. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. doi:10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  10. Mompean M, Buratti E, Guarnaccia C, Brito RM, Chakrabartty A, Baralle FE, Laurents DV (2014) Structural characterization of the minimal segment of TDP-43 competent for aggregation. Arch Biochem Biophys 545:53–62. doi:10.1016/j.abb.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  11. Wang YT, Kuo PH, Chiang CH, Liang JR, Chen YR, Wang S, Shen JC, Yuan HS (2013) The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates. J Biol Chem 288(13):9049–9057. doi:10.1074/jbc.M112.438564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lukavsky PJ, Daujotyte D, Tollervey JR, Ule J, Stuani C, Buratti E, Baralle FE, Damberger FF et al (2013) Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol 20(12):1443–1449. doi:10.1038/nsmb.2698

    Article  CAS  PubMed  Google Scholar 

  13. D’Ambrogio A, Buratti E, Stuani C, Guarnaccia C, Romano M, Ayala YM, Baralle FE (2009) Functional map** of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res 37(12):4116–4126. doi:10.1093/nar/gkp342

    Article  PubMed  PubMed Central  Google Scholar 

  14. Buratti E, Baralle FE (2010) The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol 7(4):420–429

    Article  CAS  PubMed  Google Scholar 

  15. Yang C, Tan W, Whittle C, Qiu L, Cao L, Akbarian S, Xu Z (2010) The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One 5(12):e15878. doi:10.1371/journal.pone.0015878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Igaz LM, Kwong LK, Xu Y, Truax AC, Uryu K, Neumann M, Clark CM, Elman LB et al (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 173(1):182–194. doi:10.2353/ajpath.2008.080003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Deerlin VM, Leverenz JB, Bekris LM, Bird TD, Yuan W, Elman LB, Clay D, Wood EM et al (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7(5):409–416. doi:10.1016/S1474-4422(08)70071-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tripathi VB, Baskaran P, Shaw CE, Guthrie S (2014) Tar DNA-binding protein-43 (TDP-43) regulates axon growth in vitro and in vivo. Neurobiol Dis 65:25–34. doi:10.1016/j.nbd.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dent EW, Baas PW (2014) Microtubules in neurons as information carriers. J Neurochem 129(2):235–239. doi:10.1111/jnc.12621

    Article  CAS  PubMed  Google Scholar 

  20. Goldman JE, Yen SH (1986) Cytoskeletal protein abnormalities in neurodegenerative diseases. Ann Neurol 19(3):209–223. doi:10.1002/ana.410190302

    Article  CAS  PubMed  Google Scholar 

  21. Langford GM, Kuznetsov SA, Johnson D, Cohen DL, Weiss DG (1994) Movement of axoplasmic organelles on actin filaments assembled on acrosomal processes: evidence for a barbed-end-directed organelle motor. J Cell Sci 107(Pt 8):2291–2298

    PubMed  Google Scholar 

  22. Senda T, Okabe T, Matsuda M, Fujita H (1994) Quick-freeze, deep-etch visualization of exocytosis in anterior pituitary secretory cells: localization and possible roles of actin and annexin II. Cell Tissue Res 277(1):51–60

    Article  CAS  PubMed  Google Scholar 

  23. Garner CC, Tucker RP, Matus A (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 336(6200):674–677. doi:10.1038/336674a0

    Article  CAS  PubMed  Google Scholar 

  24. Sundell CL, Singer RH (1991) Requirement of microfilaments in sorting of actin messenger RNA. Science 253(5025):1275–1277

    Article  CAS  PubMed  Google Scholar 

  25. Letourneau PC (2009) Actin in axons: stable scaffolds and dynamic filaments. Results Probl Cell Differ 48:65–90. doi:10.1007/400_2009_15

    Article  CAS  PubMed  Google Scholar 

  26. Hoogenraad CC, Akhmanova A (2010) Dendritic spine plasticity: new regulatory roles of dynamic microtubules. Neuroscientist 16(6):650–661. doi:10.1177/1073858410386357

    Article  CAS  PubMed  Google Scholar 

  27. Lepinoux-Chambaud C, Eyer J (2013) Review on intermediate filaments of the nervous system and their pathological alterations. Histochem Cell Biol 140(1):13–22. doi:10.1007/s00418-013-1101-1

    Article  CAS  PubMed  Google Scholar 

  28. Zhao J, Liem RK (2016) Alpha-internexin and peripherin: expression, assembly, functions, and roles in disease. Methods Enzymol 568:477–507. doi:10.1016/bs.mie.2015.09.012

    Article  PubMed  Google Scholar 

  29. Chakraborti S, Natarajan K, Curiel J, Janke C, Liu J (2016) The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton (Hoboken) 73(10):521–550. doi:10.1002/cm.21290

  30. Matamoros AJ, Baas PW (2016) Microtubules in health and degenerative disease of the nervous system. Brain Res Bull 126(Pt 3):217–225. doi:10.1016/j.brainresbull.2016.06.016

  31. Dombeck DA, Kasischke KA, Vishwasrao HD, Ingelsson M, Hyman BT, Webb WW (2003) Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc Natl Acad Sci U S A 100(12):7081–7086. doi:10.1073/pnas.0731953100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leventea E, Hazime K, Zhao C, Malicki J (2016) Analysis of cilia structure and function in zebrafish. Methods Cell Biol 133:179–227. doi:10.1016/bs.mcb.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  33. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68(4):610–638. doi:10.1016/j.neuron.2010.09.039

    Article  CAS  PubMed  Google Scholar 

  34. Su X, Ohi R, Pellman D (2012) Move in for the kill: motile microtubule regulators. Trends Cell Biol 22(11):567–575. doi:10.1016/j.tcb.2012.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Hancock WO (2015) Kinesin-5 is a microtubule polymerase. Nat Commun 6:8160. doi:10.1038/ncomms9160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Komis G, Illes P, Beck M, Samaj J (2011) Microtubules and mitogen-activated protein kinase signalling. Curr Opin Plant Biol 14(6):650–657. doi:10.1016/j.pbi.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  37. Sun T, Rodriguez M, Kim L (2009) Glycogen synthase kinase 3 in the world of cell migration. Develop Growth Differ 51(9):735–742. doi:10.1111/j.1440-169X.2009.01141.x

    Article  CAS  Google Scholar 

  38. Vertessy BG, Orosz F, Kovacs J, Ovadi J (1997) Alternative binding of two sequential glycolytic enzymes to microtubules. Molecular studies in the phosphofructokinase/aldolase/microtubule system. J Biol Chem 272(41):25542–25546

    Article  CAS  PubMed  Google Scholar 

  39. Halpain S, Dehmelt L (2006) The MAP1 family of microtubule-associated proteins. Genome Biol 7(6):224

    Article  PubMed  PubMed Central  Google Scholar 

  40. Riederer BM, Draberova E, Viklicky V, Draber P (1995) Changes of MAP2 phosphorylation during brain development. J Histochem Cytochem 43(12):1269–1284

    Article  CAS  PubMed  Google Scholar 

  41. Roll-Mecak A, McNally FJ (2010) Microtubule-severing enzymes. Curr Opin Cell Biol 22(1):96–103. doi:10.1016/j.ceb.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  42. Ratti A, Buratti E (2016) Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 138(Suppl 1):95–111. doi:10.1111/jnc.13625

    Article  CAS  PubMed  Google Scholar 

  43. Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, Silani V, Ratti A (2009) TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 111(4):1051–1061. doi:10.1111/j.1471-4159.2009.06383.x

    Article  CAS  PubMed  Google Scholar 

  44. Nover L, Scharf KD, Neumann D (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 9(3):1298–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mahboubi H, Stochaj U (2017) Cytoplasmic stress granules: dynamic modulators of cell signaling and disease. Biochim Biophys Acta 1863(4):884–895. doi:10.1016/j.bbadis.2016.12.022

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, Fujii M (2013) Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol 33(4):815–829. doi:10.1128/MCB.00763-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Orru S, Coni P, Floris A, Littera R, Carcassi C, Sogos V, Brancia C (2016) Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP-43 nuclear function. Hum Mol Genet. doi:10.1093/hmg/ddw276

    PubMed  Google Scholar 

  48. Cohen TJ, Hwang AW, Restrepo CR, Yuan CX, Trojanowski JQ, Lee VM (2015) An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun 6:5845. doi:10.1038/ncomms6845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SS, Kiskinis E, Winborn B et al (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81(3):536–543. doi:10.1016/j.neuron.2013.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ayala YM, Pantano S, D’Ambrogio A, Buratti E, Brindisi A, Marchetti C, Romano M, Baralle FE (2005) Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348(3):575–588. doi:10.1016/j.jmb.2005.02.038

    Article  CAS  PubMed  Google Scholar 

  51. Romano M, Buratti E, Romano G, Klima R, Del Bel BL, Stuani C, Baralle F, Feiguin F (2014) Evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins functionally interact with human and Drosophila TAR DNA-binding protein 43 (TDP-43). J Biol Chem 289(10):7121–7130. doi:10.1074/jbc.M114.548859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pesiridis GS, Tripathy K, Tanik S, Trojanowski JQ, Lee VM (2011) A “two-hit” hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport. J Biol Chem 286(21):18845–18855. doi:10.1074/jbc.M111.231118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vanden Broeck L, Naval-Sanchez M, Adachi Y, Diaper D, Dourlen P, Chapuis J, Kleinberger G, Gistelinck M et al (2013) TDP-43 loss-of-function causes neuronal loss due to defective steroid receptor-mediated gene program switching in Drosophila. Cell Rep 3(1):160–172. doi:10.1016/j.celrep.2012.12.014

    Article  CAS  PubMed  Google Scholar 

  54. Pereira A, Doshen J, Tanaka E, Goldstein LS (1992) Genetic analysis of a Drosophila microtubule-associated protein. J Cell Biol 116(2):377–383

    Article  CAS  PubMed  Google Scholar 

  55. Coyne AN, Siddegowda BB, Estes PS, Johannesmeyer J, Kovalik T, Daniel SG, Pearson A, Bowser R et al (2014) Futsch/MAP1B mRNA is a translational target of TDP-43 and is neuroprotective in a Drosophila model of amyotrophic lateral sclerosis. J Neurosci 34(48):15962–15974. doi:10.1523/JNEUROSCI.2526-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  56. Godena VK, Romano G, Romano M, Appocher C, Klima R, Buratti E, Baralle FE, Feiguin F (2011) TDP-43 regulates Drosophila neuromuscular junctions growth by modulating Futsch/MAP1B levels and synaptic microtubules organization. PLoS One 6(3):e17808. doi:10.1371/journal.pone.0017808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Y, Ray P, Rao EJ, Shi C, Guo W, Chen X, Woodruff EA 3rd, Fushimi K et al (2010) A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci U S A 107(7):3169–3174. doi:10.1073/pnas.0913602107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanson KA, Kim SH, Wassarman DA, Tibbetts RS (2010) Ubiquitin modifies TDP-43 toxicity in a Drosophila model of amyotrophic lateral sclerosis (ALS). J Biol Chem 285(15):11068–11072. doi:10.1074/jbc.C109.078527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hummel T, Krukkert K, Roos J, Davis G, Klambt C (2000) Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26(2):357–370

    Article  CAS  PubMed  Google Scholar 

  60. Romano M, Feiguin F, Buratti E (2016) TBPH/TDP-43 modulates translation of Drosophila futsch mRNA through an UG-rich sequence within its 5'UTR. Brain Res 1647:50–56. doi:10.1016/j.brainres.2016.02.022

  61. Majumder P, Chu JF, Chatterjee B, Swamy KB, Shen CJ (2016) Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol 132 (5):721–738. doi:10.1007/s00401-016-1603-8

  62. Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, Lowe P, Koppers M et al (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488(7412):499–503. doi:10.1038/nature11280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tanaka Y, Nonaka T, Suzuki G, Kametani F, Hasegawa M (2016) Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation. Hum Mol Genet 25(7):1420–1433. doi:10.1093/hmg/ddw024

    Article  CAS  PubMed  Google Scholar 

  64. Yuan A, Rao MV, Veeranna N, R.A. (2012) Neurofilaments at a glance. J Cell Sci 125:3257–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville MJ, Percy ME (1994) Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol 53(3):221–230

    Article  CAS  PubMed  Google Scholar 

  66. Corbo M, Hays AP (1992) Peripherin and neurofilament protein coexist in spinal spheroids of motor neuron disease. J Neuropathol Exp Neurol 51(5):531–537

    Article  CAS  PubMed  Google Scholar 

  67. Strong MJ, Volkening K, Hammond R, Yang W, Strong W, Leystra-Lantz C, Shoesmith C (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci 35(2):320–327. doi:10.1016/j.mcn.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  68. Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ (2009) Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 1305:168–182. doi:10.1016/j.brainres.2009.09.105

    Article  CAS  PubMed  Google Scholar 

  69. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling SC, Sun E et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14(4):459–468. doi:10.1038/nn.2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu Y, Atkinson RA, Fernandez-Martos CM, Kirkcaldie MT, Cui H, Vickers JC, King AE (2015) Changes in TDP-43 expression in development, aging, and in the neurofilament light protein knockout mouse. Neurobiol Aging 36(2):1151–1159. doi:10.1016/j.neurobiolaging.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  71. Swarup V, Phaneuf D, Bareil C, Robertson J, Rouleau GA, Kriz J, Julien JP (2011) Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134(Pt 9):2610–2626. doi:10.1093/brain/awr159

    Article  PubMed  Google Scholar 

  72. Escurat M, Djabali K, Gumpel M, Gros F, Portier MM (1990) Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L), during the development of the rat. J Neurosci 10(3):764–784

    CAS  PubMed  Google Scholar 

  73. Corrado L, Carlomagno Y, Falasco L, Mellone S, Godi M, Cova E, Cereda C, Testa L et al (2011) A novel peripherin gene (PRPH) mutation identified in one sporadic amyotrophic lateral sclerosis patient. Neurobiol Aging 32(3):552. doi:10.1016/j.neurobiolaging.2010.02.011 e551-556

    Article  PubMed  Google Scholar 

  74. Gros-Louis F, Lariviere R, Gowing G, Laurent S, Camu W, Bouchard JP, Meininger V, Rouleau GA et al (2004) A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J Biol Chem 279(44):45951–45956. doi:10.1074/jbc.M408139200

    Article  CAS  PubMed  Google Scholar 

  75. Leung CL, He CZ, Kaufmann P, Chin SS, Naini A, Liem RK, Mitsumoto H, Hays AP (2004) A pathogenic peripherin gene mutation in a patient with amyotrophic lateral sclerosis. Brain Pathol 14(3):290–296

    Article  CAS  PubMed  Google Scholar 

  76. Comley L, Allodi I, Nichterwitz S, Nizzardo M, Simone C, Corti S, Hedlund E (2015) Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS. Neuroscience 291:216–229. doi:10.1016/j.neuroscience.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  77. He CZ, Hays AP (2004) Expression of peripherin in ubiquinated inclusions of amyotrophic lateral sclerosis. J Neurol Sci 217(1):47–54

    Article  CAS  PubMed  Google Scholar 

  78. Mizuno Y, Fujita Y, Takatama M, Okamoto K (2011) Peripherin partially localizes in Bunina bodies in amyotrophic lateral sclerosis. J Neurol Sci 302(1–2):14–18. doi:10.1016/j.jns.2010.12.023

    Article  CAS  PubMed  Google Scholar 

  79. **ao S, Tjostheim S, Sanelli T, McLean JR, Horne P, Fan Y, Ravits J, Strong MJ et al (2008) An aggregate-inducing peripherin isoform generated through intron retention is upregulated in amyotrophic lateral sclerosis and associated with disease pathology. J Neurosci 28(8):1833–1840. doi:10.1523/JNEUROSCI.3222-07.2008

    Article  CAS  PubMed  Google Scholar 

  80. Muresan V, Ladescu Muresan Z (2016) Shared molecular mechanisms in Alzheimer’s disease and amyotrophic lateral sclerosis: neurofilament-dependent transport of sAPP, FUS, TDP-43 and SOD1, with endoplasmic reticulum-like tubules. Neurodegener Dis 16(1–2):55–61. doi:10.1159/000439256

    Article  CAS  PubMed  Google Scholar 

  81. Wolozin B (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7:56. doi:10.1186/1750-1326-7-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, Rouleau GA, Vande Velde C (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20(7):1400–1410. doi:10.1093/hmg/ddr021

    Article  CAS  PubMed  Google Scholar 

  83. Vanderweyde T, Apicco DJ, Youmans-Kidder K, Ash PE, Cook C, Lummertz da Rocha E, Jansen-West K, Frame AA et al (2016) Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep 15(7):1455–1466. doi:10.1016/j.celrep.2016.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zetterberg H, Skillback T, Mattsson N, Trojanowski JQ, Portelius E, Shaw LM, Weiner MW, Blennow K et al (2016) Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression. JAMA Neurol 73(1):60–67. doi:10.1001/jamaneurol.2015.3037

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pijnenburg YA, Verwey NA, van der Flier WM, Scheltens P, Teunissen CE (2015) Discriminative and prognostic potential of cerebrospinal fluid phosphoTau/tau ratio and neurofilaments for frontotemporal dementia subtypes. Alzheimers Dement (Amst) 1(4):505–512. doi:10.1016/j.dadm.2015.11.001

    Google Scholar 

  86. Steinacker P, Feneberg E, Weishaupt J, Brettschneider J, Tumani H, Andersen PM, von Arnim CA, Bohm S et al (2016) Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry 87(1):12–20. doi:10.1136/jnnp-2015-311387

    PubMed  Google Scholar 

  87. Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H (2006) Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66(6):852–856. doi:10.1212/01.wnl.0000203120.85850.54

    Article  CAS  PubMed  Google Scholar 

  88. Weydt P, Oeckl P, Huss A, Muller K, Volk AE, Kuhle J, Knehr A, Andersen PM et al (2016) Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol 79(1):152–158. doi:10.1002/ana.24552

    Article  CAS  PubMed  Google Scholar 

  89. Reijn TS, Abdo WF, Schelhaas HJ, Verbeek MM (2009) CSF neurofilament protein analysis in the differential diagnosis of ALS. J Neurol 256(4):615–619. doi:10.1007/s00415-009-0131-z

    Article  CAS  PubMed  Google Scholar 

  90. Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, Giovannoni G, Fratta P et al (2015) Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84(22):2247–2257. doi:10.1212/WNL.0000000000001642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oeckl P, Jardel C, Salachas F, Lamari F, Andersen PM, Bowser R, de Carvalho M, Costa J et al (2016) Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener 17(5–6):404–413

    Article  CAS  Google Scholar 

  92. Li S, Ren Y, Zhu W, Yang F, Zhang X, Huang X (2016) Phosphorylated neurofilament heavy chain levels in paired plasma and CSF of amyotrophic lateral sclerosis. J Neurol Sci 367:269–274. doi:10.1016/j.jns.2016.05.062

    Article  CAS  PubMed  Google Scholar 

  93. Tortelli R, Copetti M, Ruggieri M, Cortese R, Capozzo R, Leo A, D’Errico E, Mastrapasqua M et al (2015) Cerebrospinal fluid neurofilament light chain levels: marker of progression to generalized amyotrophic lateral sclerosis. Eur J Neurol 22(1):215–218. doi:10.1111/ene.12421

    Article  CAS  PubMed  Google Scholar 

  94. Tortelli R, Copetti M, Panza F, Cortese R, Capozzo R, D’Errico E, Fontana A, Simone IL et al (2016) Time to generalisation as a predictor of prognosis in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 87(6):678–679. doi:10.1136/jnnp-2014-308478

    Article  PubMed  Google Scholar 

  95. Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R (2011) Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 117(3):528–537. doi:10.1111/j.1471-4159.2011.07224.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ganesalingam J, An J, Bowser R, Andersen PM, Shaw CE (2013) pNfH is a promising biomarker for ALS. Amyotroph Lateral Scler Frontotemporal Degener 14(2):146–149. doi:10.3109/21678421.2012.729596

    Article  CAS  PubMed  Google Scholar 

  97. Menke RA, Gray E, Lu CH, Kuhle J, Talbot K, Malaspina A, Turner MR (2015) CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol 2(7):748–755. doi:10.1002/acn3.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Puentes F, Top** J, Kuhle J, van der Star BJ, Douiri A, Giovannoni G, Baker D, Amor S et al (2014) Immune reactivity to neurofilament proteins in the clinical staging of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 85(3):274–278. doi:10.1136/jnnp-2013-305494

    Article  PubMed  Google Scholar 

  99. Budini M, Romano V, Quadri Z, Buratti E, Baralle FE (2015) TDP-43 loss of cellular function through aggregation requires additional structural determinants beyond its C-terminal Q/N prion-like domain. Hum Mol Genet 24(1):9–20. doi:10.1093/hmg/ddu415

    Article  CAS  PubMed  Google Scholar 

  100. Fang YS, Tsai KJ, Chang YJ, Kao P, Woods R, Kuo PH, Wu CC, Liao JY et al (2014) Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 5:4824. doi:10.1038/ncomms5824

    Article  CAS  PubMed  Google Scholar 

  101. Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, Scotter EL, Kost J et al (2014) Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84(2):324–331. doi:10.1016/j.neuron.2014.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of an ALS Young Investigator Research Scholarship by the Deutsche Gesellschaft für Muskelkranke (DGM) (to M.O.) and EU funds (EFRE; SAB, 100111005; to M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Oberstadt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberstadt, M., Claßen, J., Arendt, T. et al. TDP-43 and Cytoskeletal Proteins in ALS. Mol Neurobiol 55, 3143–3151 (2018). https://doi.org/10.1007/s12035-017-0543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0543-1

Keywords

Navigation