Log in

Overexpression of Telomerase Reverse Transcriptase Induces Autism-like Excitatory Phenotypes in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In addition to its classical role as a regulator of telomere length, recent reports suggest that telomerase reverse transcriptase (TERT) plays a role in the transcriptional regulation of gene expression such as β-catenin-responsive pathways. Silencing or over-expression of TERT in cultured NPCs demonstrated that TERT induced glutamatergic neuronal differentiation. During embryonic brain development, expression of transcription factors involved in glutamatergic neuronal differentiation was increased in mice over-expressing TERT (TERT-tg mice). We observed increased expression of NMDA receptor subunits and phosphorylation of α-CaMKII in TERT-tg mice. TERT-tg mice showed autism spectrum disorder (ASD)-like behavioral phenotypes as well as lowered threshold against electrically induced seizure. Interestingly, the NMDA receptor antagonist memantine restored behavioral abnormalities in TERT-tg mice. Consistent with the alteration in excitatory/inhibitory (E/I) ratio, TERT-tg mice showed autism-like behaviors, abnormal synaptic organization, and function in mPFC suggesting the role of altered TERT activity in the manifestation of ASD, which is further supported by the significant association of certain SNPs in Korean ASD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2(5):255–267

    Article  CAS  PubMed  Google Scholar 

  2. Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB (2005) Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 102(35):12560–12565. doi:10.1073/pnas.0506071102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kroll TT, O’Leary DD (2005) Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc Natl Acad Sci U S A 102(20):7374–7379. doi:10.1073/pnas.0500819102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim KC, Lee DK, Go HS, Kim P, Choi CS, Kim JW, Jeon SJ, Song MR et al (2014) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol Neurobiol 49(1):512–528. doi:10.1007/s12035-013-8535-2

    Article  CAS  PubMed  Google Scholar 

  5. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178. doi:10.1038/nature10360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85(18):6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460. doi:10.1038/345458a0

    Article  CAS  PubMed  Google Scholar 

  8. Cheng AW, Shin-ya K, Wan RQ, Tang SC, Miura T, Tang HY, Khatri R, Gleichman M et al (2007) Telomere protection mechanisms change during neurogenesis and neuronal maturation: newly generated neurons are hypersensitive to telomere and DNA damage. J Neurosci 27(14):3722–3733. doi:10.1523/Jneurosci.0590-07.2007

    Article  CAS  PubMed  Google Scholar 

  9. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z et al (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460(7251):66–72. doi:10.1038/nature08137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klapper W, Shin T, Mattson MP (2001) Differential regulation of telomerase activity and TERT expression during brain development in mice. J Neurosci Res 64(3):252–260

    Article  CAS  PubMed  Google Scholar 

  11. Matsumoto S, Banine F, Struve J, **ng R, Adams C, Liu Y, Metzger D, Chambon P et al (2006) Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev Biol 289(2):372–383. doi:10.1016/j.ydbio.2005.10.044

    Article  CAS  PubMed  Google Scholar 

  12. Eberhardt M, Salmon P, von Mach MA, Hengstler JG, Brulport M, Linscheid P, Seboek D, Oberholzer J et al (2006) Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun 345(3):1167–1176. doi:10.1016/j.bbrc.2006.05.016

    Article  CAS  PubMed  Google Scholar 

  13. Kang HJ, Choi YS, Hong SB, Kim KW, Woo RS, Won SJ, Kim EJ, Jeon HK et al (2004) Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J Neurosci 24(6):1280–1287. doi:10.1523/JNEUROSCI.4082-03.2004

    Article  CAS  PubMed  Google Scholar 

  14. Benoit BO, Savarese T, Joly M, Engstrom CM, Pang L, Reilly J, Recht LD, Ross AH et al (2001) Neurotrophin channeling of neural progenitor cell differentiation. J Neurobiol 46(4):265–280. doi:10.1002/1097-4695(200103)46:4<265::AID-NEU1007>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  15. Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S et al (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283. doi:10.1371/journal.pbio.0030283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Go HS, Shin CY, Lee SH, Jeon SJ, Kim KC, Choi CS, Ko KH (2009) Increased proliferation and gliogenesis of cultured rat neural progenitor cells by lipopolysaccharide-stimulated astrocytes. Neuroimmunomodulation 16(6):365–376. doi:10.1159/000228911

    Article  CAS  PubMed  Google Scholar 

  17. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1):179–185. doi:10.1038/nprot.2006.27

    Article  CAS  PubMed  Google Scholar 

  18. Noldus LP, Spink AJ, Tegelenbosch RA (2001) EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods Instrum Comput 33(3):398–414

    Article  CAS  PubMed  Google Scholar 

  19. Park HG, Yoon SY, Choi JY, Lee GS, Choi JH, Shin CY, Son KH, Lee YS et al (2007) Anticonvulsant effect of wogonin isolated from Scutellaria baicalensis. Eur J Pharmacol 574(2-3):112–119. doi:10.1016/j.ejphar.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  20. Crawley JN (2004) Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev 10(4):248–258. doi:10.1002/mrdd.20039

    Article  PubMed  Google Scholar 

  21. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3(5):287–302. doi:10.1111/j.1601-1848.2004.00076.x

    Article  CAS  PubMed  Google Scholar 

  22. Dufour-Rainfray D, Vourc’h P, Le Guisquet AM, Garreau L, Ternant D, Bodard S, Jaumain E, Gulhan Z et al (2010) Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci Lett 470(1):55–59. doi:10.1016/j.neulet.2009.12.054

    Article  CAS  PubMed  Google Scholar 

  23. Kim KC, Kim P, Go HS, Choi CS, Yang SI, Cheong JH, Shin CY, Ko KH (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol Lett 201(2):137–142. doi:10.1016/j.toxlet.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  24. Browning RA, Wang C, Lanker ML, Jobe PC (1990) Electroshock- and pentylenetetrazol-induced seizures in genetically epilepsy-prone rats (GEPRs): differences in threshold and pattern. Epilepsy Res 6(1):1–11

    Article  CAS  PubMed  Google Scholar 

  25. Litchfield JT Jr, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96(2):99–113

    CAS  PubMed  Google Scholar 

  26. Deacon R (2012) Assessing burrowing, nest construction, and hoarding in mice. J Vis Exp 59:e2607. doi:10.3791/2607

    Google Scholar 

  27. Dela Pena IJ, Lee HL, Yoon SY, Dela Pena JB, Kim HK, Hong EY, Cheong JH (2013) The ethanol extract of Cirsium japonicum increased chloride ion influx through stimulating GABA(A) receptor in human neuroblastoma cells and exhibited anxiolytic-like effects in mice. Drug Discov Ther 7(1):18–23

    Article  CAS  PubMed  Google Scholar 

  28. Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24(3):525–529

    Article  CAS  PubMed  Google Scholar 

  29. Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H (2001) The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20(17):4935–4943. doi:10.1093/emboj/20.17.4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gan Q, Lee A, Suzuki R, Yamagami T, Stokes A, Nguyen BC, Pleasure D, Wang J et al (2014) Pax6 mediates ß-catenin signaling for self-renewal and neurogenesis by neocortical radial glial stem cells. Stem Cells 32(1):45–58. doi:10.1002/stem.1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, Sahin E, Kost-Alimova M et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106. doi:10.1038/nature09603

    Article  CAS  PubMed  Google Scholar 

  32. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, Horvath S, Geschwind DH (2013) Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155(5):1008–1021. doi:10.1016/j.cell.2013.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi J, Southworth LK, Sarin KY, Venteicher AS, Ma W, Chang W, Cheung P, Jun S et al (2008) TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet 4(1):e10. doi:10.1371/journal.pgen.0040010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D et al (2000) A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6(6):1287–1295

    Article  CAS  PubMed  Google Scholar 

  35. Squillaro T, Hayek G, Farina E, Cipollaro M, Renieri A, Galderisi U (2008) A case report: bone marrow mesenchymal stem cells from a Rett syndrome patient are prone to senescence and show a lower degree of apoptosis. J Cell Biochem 103(6):1877–1885. doi:10.1002/jcb.21582

    Article  CAS  PubMed  Google Scholar 

  36. Krumm N, O’Roak BJ, Shendure J, Eichler EE (2014) A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 37(2):95–105. doi:10.1016/j.tins.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  37. White SW, Oswald D, Ollendick T, Scahill L (2009) Anxiety in children and adolescents with autism spectrum disorders. Clin Psychol Rev 29(3):216–229. doi:10.1016/j.cpr.2009.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Steensel FJ, Bogels SM, Perrin S (2011) Anxiety disorders in children and adolescents with autistic spectrum disorders: a meta-analysis. Clin Child Fam Psychol Rev 14(3):302–317. doi:10.1007/s10567-011-0097-0

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bernardet M, Crusio WE (2006) Fmr1 KO mice as a possible model of autistic features. TheScientificWorldJOURNAL 6:1164–1176. doi:10.1100/tsw.2006.220

    Article  CAS  PubMed  Google Scholar 

  40. Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56(3):422–437. doi:10.1016/j.neuron.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  41. Holmes A, Yang RJ, Lesch KP, Crawley JN, Murphy DL (2003) Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28(12):2077–2088. doi:10.1038/sj.npp.1300266

    CAS  PubMed  Google Scholar 

  42. Carroll JC, Boyce-Rustay JM, Millstein R, Yang R, Wiedholz LM, Murphy DL, Holmes A (2007) Effects of mild early life stress on abnormal emotion-related behaviors in 5-HTT knockout mice. Behav Genet 37(1):214–222. doi:10.1007/s10519-006-9129-9

    Article  PubMed  Google Scholar 

  43. Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, Kidd FL, Sung CC et al (2008) Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci 28(7):1697–1708. doi:10.1523/JNEUROSCI.3032-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, Sheng M, Crawley JN (2011) Sociability and motor functions in Shank1 mutant mice. Brain Res 1380:120–137. doi:10.1016/j.brainres.2010.09.026

    Article  CAS  PubMed  Google Scholar 

  45. Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F, Ramanantsoa N, Gallego J et al (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci U S A 105(5):1710–1715. doi:10.1073/pnas.0711555105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bielsky IF, Hu SB, Ren X, Terwilliger EF, Young LJ (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47(4):503–513. doi:10.1016/j.neuron.2005.06.031

    Article  CAS  PubMed  Google Scholar 

  47. Insel TR (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65(6):768–779. doi:10.1016/j.neuron.2010.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weidner KL, Buenaventura DF, Chadman KK (2014) Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age. Behav Brain Res 268:222–228. doi:10.1016/j.bbr.2014.04.025

    Article  CAS  PubMed  Google Scholar 

  49. Papaleo F, Silverman JL, Aney J, Tian Q, Barkan CL, Chadman KK, Crawley JN (2011) Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice. Learn Mem 18(8):534–544. doi:10.1101/lm.2213711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K, Stevens KE, Maccaferri G et al (1997) Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell 90(5):895–905

    Article  CAS  PubMed  Google Scholar 

  51. Peripato AC, Cheverud JM (2002) Genetic influences on maternal care. Am Nat 160(Suppl 6):S173–S185. doi:10.1086/342900

    Article  PubMed  Google Scholar 

  52. Moretti P, Bouwknecht JA, Teague R, Paylor R, Zoghbi HY (2005) Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum Mol Genet 14(2):205–220. doi:10.1093/hmg/ddi016

    Article  CAS  PubMed  Google Scholar 

  53. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ et al (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50(3):377–388. doi:10.1016/j.neuron.2006.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goorden SM, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y (2007) Cognitive deficits in Tsc1+/- mice in the absence of cerebral lesions and seizures. Ann Neurol 62(6):648–655. doi:10.1002/ana.21317

    Article  PubMed  Google Scholar 

  55. Samaco RC, Fryer JD, Ren J, Fyffe S, Chao HT, Sun Y, Greer JJ, Zoghbi HY et al (2008) A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum Mol Genet 17(12):1718–1727. doi:10.1093/hmg/ddn062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Etherton MR, Blaiss CA, Powell CM, Sudhof TC (2009) Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 106(42):17998–18003. doi:10.1073/pnas.0910297106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Satoh Y, Endo S, Nakata T, Kobayashi Y, Yamada K, Ikeda T, Takeuchi A, Hiramoto T et al (2011) ERK2 contributes to the control of social behaviors in mice. J Neurosci 31(33):11953–11967. doi:10.1523/JNEUROSCI.2349-11.2011

    Article  CAS  PubMed  Google Scholar 

  58. El-Kordi A, Winkler D, Hammerschmidt K, Kastner A, Krueger D, Ronnenberg A, Ritter C, Jatho J et al (2013) Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav Brain Res 251:41–49. doi:10.1016/j.bbr.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  59. Bartley AF, Lucas EK, Brady LJ, Li Q, Hablitz JJ, Cowell RM, Dobrunz LE (2015) Interneuron transcriptional dysregulation causes frequency-dependent alterations in the balance of inhibition and excitation in hippocampus. J Neurosci 35(46):15276–15290. doi:10.1523/JNEUROSCI.1834-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grether JK, Anderson MC, Croen LA, Smith D, Windham GC (2009) Risk of autism and increasing maternal and paternal age in a large north American population. Am J Epidemiol 170(9):1118–1126. doi:10.1093/aje/kwp247

    Article  PubMed  Google Scholar 

  61. Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S, Rabinowitz J, Shulman C et al (2006) Advancing paternal age and autism. Arch Gen Psychiatry 63(9):1026–1032. doi:10.1001/archpsyc.63.9.1026

    Article  PubMed  Google Scholar 

  62. Kimura M, Cherkas LF, Kato BS, Demissie S, Hjelmborg JB, Brimacombe M, Cupples A, Hunkin JL et al (2008) Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet 4(2):e37. doi:10.1371/journal.pgen.0040037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Van Criekinge W, De Backer GG, Gillebert TC, Van Oostveldt P et al (2007) Paternal age at birth is an important determinant of offspring telomere length. Hum Mol Genet 16(24):3097–3102. doi:10.1093/hmg/ddm271

    Article  CAS  PubMed  Google Scholar 

  64. Arbeev KG, Hunt SC, Kimura M, Aviv A, Yashin AI (2011) Leukocyte telomere length, breast cancer risk in the offspring: the relations with father’s age at birth. Mech Ageing Dev 132(4):149–153. doi:10.1016/j.mad.2011.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  65. Eisenberg DT (2011) An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol 23(2):149–167. doi:10.1002/ajhb.21127

    Article  PubMed  Google Scholar 

  66. Bray I, Gunnell D, Davey Smith G (2006) Advanced paternal age: how old is too old? J Epidemiol Community Health 60(10):851–853. doi:10.1136/jech.2005.045179

    Article  PubMed  PubMed Central  Google Scholar 

  67. Idring S, Magnusson C, Lundberg M, Ek M, Rai D, Svensson AC, Dalman C, Karlsson H et al (2014) Parental age and the risk of autism spectrum disorders: findings from a Swedish population-based cohort. Int J Epidemiol 43(1):107–115. doi:10.1093/ije/dyt262

    Article  PubMed  Google Scholar 

  68. Hultman CM, Sandin S, Levine SZ, Lichtenstein P, Reichenberg A (2011) Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry 16(12):1203–1212. doi:10.1038/mp.2010.121

    Article  CAS  PubMed  Google Scholar 

  69. Li Z, Tang J, Li H, Chen S, He Y, Liao Y, Wei Z, Wan G et al (2014) Shorter telomere length in peripheral blood leukocytes is associated with childhood autism. Sci Rep 4:7073. doi:10.1038/srep07073

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, Roberts E, Hampshire DJ et al (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71(1):136–142. doi:10.1086/341283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lin SY, Rai R, Li K, Xu ZX, Elledge SJ (2005) BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc Natl Acad Sci U S A 102(42):15105–15109. doi:10.1073/pnas.0507722102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi L, Li M, Su B (2012) MCPH1/BRIT1 represses transcription of the human telomerase reverse transcriptase gene. Gene 495(1):1–9. doi:10.1016/j.gene.2011.12.053

    Article  CAS  PubMed  Google Scholar 

  73. Pinto-Martin J, Levy SE (2004) Early diagnosis of autism spectrum disorders. Curr Treat Options Neurol 6(5):391–400

    Article  PubMed  Google Scholar 

  74. Zhou XZ, Lu KP (2001) The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107(3):347–359

    Article  CAS  PubMed  Google Scholar 

  75. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466(7304):368–372. doi:10.1038/nature09146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shen J, Gammon MD, Wu HC, Terry MB, Wang Q, Bradshaw PT, Teitelbaum SL, Neugut AI et al (2010) Multiple genetic variants in telomere pathway genes and breast cancer risk. Cancer Epidemiol Biomarkers Prev 19(1):219–228. doi:10.1158/1055-9965.EPI-09-0771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Svenson U, Nordfjall K, Stegmayr B, Manjer J, Nilsson P, Tavelin B, Henriksson R, Lenner P et al (2008) Breast cancer survival is associated with telomere length in peripheral blood cells. Cancer Res 68(10):3618–3623. doi:10.1158/0008-5472.CAN-07-6497

    Article  CAS  PubMed  Google Scholar 

  78. Gramatges MM, Telli ML, Balise R, Ford JM (2010) Longer relative telomere length in blood from women with sporadic and familial breast cancer compared with healthy controls. Cancer Epidemiol Biomarkers Prev 19(2):605–613. doi:10.1158/1055-9965.EPI-09-0896

    Article  CAS  PubMed  Google Scholar 

  79. Zheng YL, Ambrosone C, Byrne C, Davis W, Nesline M, McCann SE (2010) Telomere length in blood cells and breast cancer risk: investigations in two case-control studies. Breast Cancer Res Treat 120(3):769–775. doi:10.1007/s10549-009-0440-z

    Article  PubMed  Google Scholar 

  80. Kao HT, Buka SL, Kelsey KT, Gruber DF, Porton B (2010) The correlation between rates of cancer and autism: an exploratory ecological investigation. PLoS One 5(2):e9372. doi:10.1371/journal.pone.0009372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, Jakobsdottir M, Helgadottir H et al (2009) Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 41(2):221–227. doi:10.1038/ng.296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Terry KL, Tworoger SS, Vitonis AF, Wong J, Titus-Ernstoff L, De Vivo I, Cramer DW (2012) Telomere length and genetic variation in telomere maintenance genes in relation to ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 21(3):504–512. doi:10.1158/1055-9965.EPI-11-0867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matsubara Y, Murata M, Yoshida T, Watanabe K, Saito I, Miyaki K, Omae K, Ikeda Y (2006) Telomere length of normal leukocytes is affected by a functional polymorphism of hTERT. Biochem Biophys Res Commun 341(1):128–131. doi:10.1016/j.bbrc.2005.12.163

    Article  CAS  PubMed  Google Scholar 

  84. Beesley J, Pickett HA, Johnatty SE, Dunning AM, Chen X, Li J, Michailidou K, Lu Y et al (2011) Functional polymorphisms in the TERT promoter are associated with risk of serous epithelial ovarian and breast cancers. PLoS One 6(9):e24987. doi:10.1371/journal.pone.0024987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M, Yang X, Siegel G, Bergman A et al (2010) Evolution in health and medicine Sackler colloquium: genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci U S A 107(Suppl 1):1710–1717. doi:10.1073/pnas.0906191106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to appreciate Dr. Daniel H. Geschwind for editing the manuscript and for the helpful discussion. This work was supported by the Korean Health Technology R&D project, Ministry of Health & Welfare, Republic of Korea (HI12C0021 0200), and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (CY Shin, 2014R1A2A2A01003079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Young Shin.

Ethics declarations

Animal treatment and maintenance were carried out in accordance with the Principle of Laboratory Animal Care (NIH publication No. 85–23, revised 1985) and were approved by the Animal Care and Use Committee of the Konkuk University, Korea (KU12016 and KU12115).

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.C., Rhee, J., Park, JE. et al. Overexpression of Telomerase Reverse Transcriptase Induces Autism-like Excitatory Phenotypes in Mice. Mol Neurobiol 53, 7312–7328 (2016). https://doi.org/10.1007/s12035-015-9630-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9630-3

Keywords

Navigation