Log in

Study of optical properties of TiO2 nanoparticles and CdS@TiO2 nanocomposites and their use for photocatalytic degradation of rhodamine B under natural light irradiation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we report the synthesis of two CdS@TiO2 nanocomposites (CT1 and CT2) by two-step low temperature solvothermal decomposition method using two different stoichiometric combinations between CdS and TiO2 nanoparticles (NPs). CdCl2(3-chlorobenzaldehyde thiosemicarbazone)2 was used as a molecular precursor to obtain CdS NPs, whereas titanium isopropoxide was used to obtain TiO2 NPs. The as-prepared CT nanocomposites were characterized by powder X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy to evaluate their structures and properties. Further, these nanocomposites were used for the photocatalytic degradation of rhodamine B under solar light irradiation. It is found that CdS@TiO2 (CT1) nanocomposite shows highest degradation efficiency of 98.74% within 60 min as compared to bare TiO2 NPs which shows only 66.40% degradation efficiency. The enhanced photocatalytic efficiency due to charge transfer properties of bare NPs and CT nanocomposites was further investigated by electrochemical analysis and photoluminescence studies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Arabzadeh A and Salimi A 2016 J. Colloid Interface Sci. 479 43

    CAS  Google Scholar 

  2. Pant B, Barakat N A M, Pant H R, Park M, Saud P S, Kim J W et al 2014 J. Colloid Interface Sci. 434 159

    CAS  Google Scholar 

  3. Su C, Shao C and Liu Y 2011 J. Colloid Interface Sci. 359 220

    CAS  Google Scholar 

  4. Nakata K and Fujishima A 2012 J. Photochem. Photobiol. C: Photochem. Rev. 13 169

    CAS  Google Scholar 

  5. Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69

    CAS  Google Scholar 

  6. Wang H, Wang G, Ling Y, Lepert M, Wang C, Zhang J Z et al 2012 Nanoscale 4 1463

    CAS  Google Scholar 

  7. Li X, Chen X, Niu H, Han X, Zhang T, Liu J et al 2015 J. Colloid Interface Sci. 452 89

    CAS  Google Scholar 

  8. Isamail A A and Bahnemann D W 2011 J. Mater. Chem. 21 11686

    Google Scholar 

  9. Guo X, Di W, Chen C, Liu C, Wang X and Qin W 2014 Dalton Trans. 43 1048

    CAS  Google Scholar 

  10. Cao Y, He T, Chen Y and Cao Y 2010 J. Phys. Chem. C 114 3627

    CAS  Google Scholar 

  11. Anpo M and Takeuchi M 2003 J. Catal. 216 505

    CAS  Google Scholar 

  12. Kato H and Kudo A 2002 J. Phys. Chem. B 106 5029

    CAS  Google Scholar 

  13. Iwasaki M, Hara M, Kawada H, Tada H and Ito S 2000 J. Colloid Interface Sci. 224 202

    CAS  Google Scholar 

  14. Zhang Z, Shao C, Li X, Sun Y, Zhang M, Mu J et al 2013 Nanoscale 5 606

    CAS  Google Scholar 

  15. Chaguetmi S, Mammeri F, Nowak S, Decorse P, Lecoq H, Gaceur M et al 2013 RSC Adv. 3 2572

    CAS  Google Scholar 

  16. Ashokkumar M 1998 Int. J. Hydrog. Energy 23 427

    CAS  Google Scholar 

  17. Xue C, Wang T, Yang G, Yang B and Ding S 2014 J. Mater. Chem. A 2 7674

    CAS  Google Scholar 

  18. Bessekhouad Y, Robert D and Weber J V 2004 J. Photochem. Photobiol. A: Chemistry 163 569

    CAS  Google Scholar 

  19. Shi J-W, Yan X, Cui H-J, Zong X, Fu M-L, Chen S et al 2012 J. Mol. Catal. A: Chem. 356 53

    CAS  Google Scholar 

  20. Liu Z, Fang P, Wang S, Gao Y, Chen F, Zheng F et al 2012 J. Mol. Catal. A: Chem. 363 159

    Google Scholar 

  21. Yu L, Wang D and Ye D 2015 Sep. Purif. Technol. 156 708

    CAS  Google Scholar 

  22. Zhou P, Le Z, **e Y, Fang J and Xu J 2017 J. Alloys Compd. 692 170

    CAS  Google Scholar 

  23. Ahmed R, Will G, Bell J and Wang H 2012 J. Nanoparticle Res. 14 1

    Google Scholar 

  24. Lv J, Wang H, Gao H, Xu G, Wang D, Chen Z et al 2015 Surf. Coat. Technol. 261 356

    CAS  Google Scholar 

  25. Pawar A S, Garje S S and Revaprasadu N 2016 Mater. Chem. Phys. 183 366

    CAS  Google Scholar 

  26. Samant K M, Suroshe S J and Garje S S 2014 Eur. J. Inorg. Chem. 2014 499

    CAS  Google Scholar 

  27. Ansari A, Badhe R A and Garje S S 2019 ACS Omega 4 14937

    CAS  Google Scholar 

  28. Pawar A S, Mlowe S, Garje S S, Akerman M P and Revaprasadu N 2017 Inorg. Chim. Acta 463 7

    CAS  Google Scholar 

  29. Disale S D and Garje S S 2011 J. Organomet. Chem. 696 3328

    CAS  Google Scholar 

  30. Badhe R A, Ansari A and Garje S S 2018 ACS Omega 3 18663

    CAS  Google Scholar 

  31. Ansari A, Sachar S and Garje S S 2018 New J. Chem. 42 13358

    CAS  Google Scholar 

  32. Liu L, Luo C, **ong J, Yang Z, Zhang Y, Cai Y et al 2017 J. Alloys Compd. 690 771

    CAS  Google Scholar 

  33. Mlondo S N, Revaprasadu N, Christian P, Helliwell M and O’Brien P 2009 Polyhedron 28 2097

    CAS  Google Scholar 

  34. Kalpana D, Omkumar K S, Kumar S S and Renganathan N G 2006 Electrochim. Acta 52 1309

    CAS  Google Scholar 

  35. Li X, **a T, Xu C, Murowchick J and Chen X 2014 Catal. Today 225 64

    CAS  Google Scholar 

  36. Zhao H, Liu L, Andino J M and Li Y 2013 J. Mater. Chem. A 1 8209

    CAS  Google Scholar 

  37. Chen Z and Xu Y J 2013 ACS Appl. Mater. Interfaces 5 13353

    CAS  Google Scholar 

  38. Mani A D and Subrahmanyam C 2016 Mater. Res. Bull. 73 377

    CAS  Google Scholar 

  39. Wu L, Yu J C and Fu X 2006 J. Mol. Catal. A: Chem. 244 25

    CAS  Google Scholar 

  40. Yang G, Yang B, **ao T and Yan Z 2013 Appl. Surf. Sci. 283 402

    CAS  Google Scholar 

  41. Kim Y, Lee J, Jeong H, Lee Y, Um M H, Jeong K M et al 2008 J. Ind. Eng. Chem. 14 396

    CAS  Google Scholar 

  42. Li X, Shen H, Li S, Niu J Z, Wang H and Li L S 2010 J. Mater. Chem. 20 923

    CAS  Google Scholar 

  43. Sun M, Wang Y, Fang Y, Sun S and Yu Z 2016 J. Alloys Compd. 684 335

    CAS  Google Scholar 

  44. Qorbani M, Naseri N, Moradlou O, Azimirad R and Moshfegh A Z 2015 Appl. Catal. B: Environ. 162 210

    CAS  Google Scholar 

  45. Kozlova E A, Kozhevnikova N S, Cherepanova S V, Lyubina T P, Gerasimov E Y, Kaichev V V et al 2012 J. Photochem. Photobiol. A: Chem. 250 103

    CAS  Google Scholar 

  46. Bruce J C, Revaprasadu N and Koc K R 2007 New J. Chem. 31 1647

    CAS  Google Scholar 

  47. Maleki M and Haghighi M 2016 J. Mol. Catal. A: Chem. 424 283

    CAS  Google Scholar 

  48. Onwudiwe D C, Kruger T P J, Oluwatobi O S and Steydom C A 2014 Appl. Surf. Sci. 290 18

    CAS  Google Scholar 

  49. Jostar T S, Devadason S and Suthagar J 2015 Mater. Sci. Semicond. Process. 34 65

    Google Scholar 

  50. Fu H, Pan C, Yao W and Zhu Y 2005 J. Phys. Chem. B 109 22432

    CAS  Google Scholar 

  51. Guo X, Chen C, Song W, Wang X, Di W and Qin W 2014 J. Mol. Catal. A: Chem. 387 1

    CAS  Google Scholar 

  52. Zhou L, ** C, Yu Y, Chi F, Ran S and Lv Y 2016 J. Alloys Compd. 680 301

    CAS  Google Scholar 

  53. Zhao H, Wu M, Liu J, Deng Z, Li Y and Su B-L 2016 Appl. Catal. B: Environ. 184 182

    CAS  Google Scholar 

  54. Wang M, Zhang H, Zu H, Zhang Z and Han J 2018 Appl. Surf. Sci. 455 729

    CAS  Google Scholar 

  55. Li C, Fan W, Lu H, Ge Y, Bai H and Shi W 2016 New J. Chem. 40 2287

    CAS  Google Scholar 

  56. Divya K S, Xavier M M, Vandana P V, Reethu V N and Mathew S 2017 New J. Chem. 41 6445

    Google Scholar 

  57. Sun G, Zhu C, Zheng J, Jiang B, Yin H, Wang H et al 2016 Mater. Lett. 166 113

    CAS  Google Scholar 

  58. Liang H, Liu S, Zhang H, Wang X and Wang J 2018 RSC Adv. 8 13625

    CAS  Google Scholar 

  59. Tian F, Hou D, Hu F, **e K, Qiao X and Li D 2017 Appl. Surf. Sci. 391 295

    CAS  Google Scholar 

  60. Shi Z, Liu J, Lan H, Li X, Zhu B and Yang J 2019 J. Mater. Sci.: Mater. Electron. 30 17682

    CAS  Google Scholar 

  61. Dang R and Ma X 2017 J. Mater. Sci.: Mater. Electron. 28 8818

    CAS  Google Scholar 

  62. Wang H, Li J, Zhou H, Yao S and Zhang W 2019 J. Mater. Sci.: Mater. Electron. 30 10754

    CAS  Google Scholar 

  63. Yang H, Liu Z, Wang K, Pu S, Yang S and Yang L 2017 Catal. Lett. 147 2581

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Science and Technology (DST-EMRF grant nos. EMR/2016/007052 and DST-PURSE), India, for providing financial support. We also acknowledge Department of Earth Science, Indian Institute of Technology, Bombay, for providing Raman Facility and MNIT, Jaipur, for providing XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivram S Garje.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2420 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badhe, R.A., Ansari, A. & Garje, S.S. Study of optical properties of TiO2 nanoparticles and CdS@TiO2 nanocomposites and their use for photocatalytic degradation of rhodamine B under natural light irradiation. Bull Mater Sci 44, 11 (2021). https://doi.org/10.1007/s12034-020-02313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02313-1

Keywords

Navigation