Log in

Process optimization of dye-sensitized solar cells using \(\hbox {TiO}_{2}\)–graphene nanocomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

\(\hbox {TiO}_{2}\)–graphene (TGR) nanocomposites with varying concentrations of graphene from 0 to 1 wt% were prepared by direct mix method. X-ray diffraction (XRD) spectra confirmed the incorporation of graphene in photoanode material, which was further supported by field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX). The UV–visible spectrum of these nanocomposites shifted towards higher wavelength region as compared to pure \(\hbox {TiO}_{2}\) that indicated a reduced band gap and hence, enhanced absorption bandwidth. Significant reduction in electron–hole recombination was confirmed from photoluminescence spectroscopy. These TGR nanocomposite films after tethering with black dye were employed as photoanodes in dye-sensitized solar cells (DSSCs). The efficiency of solar cells at varying concentrations of graphene (in photoandes) was also investigated. TGR 0.25 wt% nanocomposite showed the highest photocurrent density (\(J_{\mathrm{SC}}\)) of \(18.4\,\hbox {mA}\,\hbox {cm}^{-2}\) and efficiency (\(\eta \)) of 4.69%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oregan B and Gratzel M 1991 Nature 353 737

    Article  Google Scholar 

  2. Moula G, Mumin M A and Charpentier P A 2013 J. Nanomater. Mol. Nanotechnol. S1 1

    Google Scholar 

  3. Kay A and Grätzel M 1996 Sol. Energy Mater. Sol. Cells 44 99

    Article  Google Scholar 

  4. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N and Han L 2006 Jpn. J. Appl. Phys. 45 L638

    Article  Google Scholar 

  5. Kaur M and Verma N K 2013 J. Mater. Sci.: Mater. Electron 24 1121

    Article  Google Scholar 

  6. Jyoti D, Mohan D and Dhar R 2013 J. Renew. Sustain. Energy 5 013112

    Article  Google Scholar 

  7. Grätzel M 2001 Nature 414 338

    Article  Google Scholar 

  8. Tsai T H, Chiou S C and Chen S M 2011 Int. J. Electrochem. Sci. 6 3333

    Google Scholar 

  9. Zhu K, Neale N R, Miedaner A and Frank A J 2007 Nano Lett. 7 69

    Article  Google Scholar 

  10. Lee Y and Kang M 2010 Mater. Chem. Phys. 122 284

    Article  Google Scholar 

  11. Ma H, Tian J, Cui L, Liu Y, Bai S, Chen H et al 2015 J. Mater. Chem. A 3 8890

    Article  Google Scholar 

  12. Song C B, Qiang Y H, Zhao Y L, Gu X Q, Zhu L, Song J et al 2014 Int. J. Electrochem. Sci. 9 8090

    Google Scholar 

  13. Qu J and Lai C 2013 J. Nanomater. https://doi.org/10.1155/2013/762730

  14. Zhang Y, Tang Z R, Fu X and Xu Y J 2010 ACS Nano 4 7303

    Article  Google Scholar 

  15. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  Google Scholar 

  16. Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132

    Article  Google Scholar 

  17. Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A et al 2006 Nature 442 282

    Article  Google Scholar 

  18. Geim A K 2009 Science 324 1530

    Article  Google Scholar 

  19. Mohamed R M 2012 Desalin. Water Treat. 50 147

    Article  Google Scholar 

  20. Stengl V, Bakardjieva S, Grygar T M, Bludska J and Kormunda M 2013 Chem. Central J. 7 1

    Article  Google Scholar 

  21. Jyoti D, Mohan D and Dhar R 2012 Modern Phys. Lett. B 26 1250123

    Article  Google Scholar 

  22. Jyoti D, Mohan D, Dhar R and Singh A 2012 Invertis J. Renew. Energy 2 29

    Google Scholar 

  23. Gaya U I and Abdullah A H 2008 J. Photochem. Photobiol. C: Photochem. Rev. 9 1

    Article  Google Scholar 

  24. Kim A Y, Kim J, Kim M Y, Ha S W, Tien N T T and Kang M 2012 Bull. Korean Chem. Soc. 33 3355

    Article  Google Scholar 

  25. Zhang N, Zhang Y and Xu Y J 2012 Nanoscale 4 5792

    Article  Google Scholar 

  26. Yang N, Zhai J, Wang D, Chen Y and Jiang L 2010 ACS Nano 4 887

    Article  Google Scholar 

  27. Tan L L, Ong W J, Chai S P and Mohamed A R 2013 Nanoscale Res. Lett. 8 1

    Article  Google Scholar 

  28. Lim S P, Pandikumar A, Huang N M and Lim H N 2015 Int. J. Energy Res. 39 812

    Article  Google Scholar 

  29. Abramoff M D, Magalhoes P J and Ram S J 2004 Biophotonics Int. 11 36

    Google Scholar 

  30. Eshaghi A and Aghaei A A 2015 Bull. Mater. Sci. 38 1177

    Article  Google Scholar 

  31. Jyoti D, Mohan D and Singh A 2014 Int. J. Enhanced Res. Sci. Technol. Eng. 3 388

    Article  Google Scholar 

  32. Jyoti D and Mohan D 2012 Int. J. Sci., Eng. Comp. Technol. 2 83

    Google Scholar 

  33. Liu S, Liu C, Wang W, Cheng B and Yu J 2012 Nanoscale 4 3193

    Article  Google Scholar 

  34. Huang Q, Tian S, Zeng D, Wang X, Song W, Li Y et al 2013 ACS Catal. 3 1477

    Article  Google Scholar 

  35. Lu T, Zhang R, Hu C, Chen F, Duo S and Hub Q 2013 Phys. Chem. Chem. Phys. 15 12963

    Article  Google Scholar 

  36. Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi 15 627

    Article  Google Scholar 

  37. Kazmi S A, Hameed S, Ahmed A S, Arshad M and Azam A 2017 J. Alloys Compd. 691 659

    Article  Google Scholar 

  38. Sadhu S and Poddar P 2014 J. Phys. Chem. C 118 19363

    Article  Google Scholar 

  39. ** C, Liu B, Lei Z and Sun J 2015 Nanoscale Res. Lett. https://doi.org/10.1186/s11671-015-0790-x

  40. Madhavan A A, Ranjusha R, Daya K C, Arun T A, Praveen P, Sanosh K P et al 2014 Sci. Adv. Mater. 6 1

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to UGC-SAP (DRS-II), Department of Physics, Delhi University (New Delhi) and IUAC (an autonomous centre of UGC) for providing the facilities of XRD, JV characteristics and FESEM with EDX, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulkesh Siwach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siwach, B., Mohan, D., Sharma, S. et al. Process optimization of dye-sensitized solar cells using \(\hbox {TiO}_{2}\)–graphene nanocomposites. Bull Mater Sci 40, 1371–1377 (2017). https://doi.org/10.1007/s12034-017-1492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1492-z

Keywords

Navigation