Log in

Molecular Analysis of Pseudomonas aeruginosa Isolates with Mutant gyrA Gene and Development of a New Ciprofloxacin Derivative for Antimicrobial Therapy

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This study focuses on the prevalence of Pseudomonas aeruginosa in various medical specimens. In addition, the investigates of this research shows the genetic analysis of pathogen-resistant isolates and chemical modifications to ciprofloxacin. A total of 225 specimens from men and women aged 30 to 60 were carefully collected and examined, including samples from wound, burn, urine, sputum, and ear samples. The data were obtained from AL Muthanna hospitals. PCR–RFLP and gene expression analysis were used to identify resistant strains and explore the genetic basis of antibiotic resistance. A ciprofloxacin derivative was synthesized and confirmed through FT-IR, 1H-NMR, and mass spectroscopy techniques then it was tested as antibacterial agent. Also, molecular docking study was conducted to predict the mechanism of action for the synthesized derivative. The results demonstrated that wound samples had the highest positive rate (33.7%) of P. aeruginosa isolates. The PCR–RFLP testing correlated ciprofloxacin resistance with gyrA gene mutation. Gene expression analysis revealed significant changes in the gyrA gene expression in comparison to the reference rpsL gene subsequent to exposure to the synthesized derivative. Furthermore, the molecular docking investigation illustrated the strategic positioning of the ciprofloxacin derivative within the DNA-binding site of the gyrA enzyme. The examination of genetic expression patterns manifested diverse effects attributed to the CIP derivative on P. aeruginosa, thus portraying it as a viable candidate in the quest for the development of novel antimicrobial agents. Ciprofloxacin derivative may offer new antimicrobial therapeutic options for treating Pseudomonas aeruginosa infections in wound specimens, addressing resistance and gyrA gene mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data and information are available in the manuscript.

References

  1. Gellatly, S. L., & Hancock, R. E. (2013). Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathogens and Disease, 67, 159–173. https://doi.org/10.1111/2049-632X.12033

    Article  CAS  PubMed  Google Scholar 

  2. Gjodsbol, K., Christensen, J. J., Karlsmark, T., Jørgensen, B., Klein, B. M., & Krogfelt, K. A. (2006). Multiple bacterial species reside in chronic wounds: A longitudinal study. International Wound Journal, 3, 225–31. https://doi.org/10.1111/j.1742-481X.2006.00159.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. CDC. Antibiotic Resistance Threats in the United States. [Accessed on 1 November 2022]. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html

  4. Bhatt, S., & Chatterjee, S. (2022). Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation–A comprehensive review. Environmental Pollution, 315, 120440. https://doi.org/10.1016/j.envpol.2022.120440

    Article  CAS  PubMed  Google Scholar 

  5. Tamma, P., Aitken, S., Bonomo, R. (2022) IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections: Version 2.0. IDSA; Arlington, VA, USA

  6. Wood, S. J., Kuzel, T. M., & Shafikhani, S. H. (2023). Pseudomonas aeruginosa: Infections, animal modeling, and therapeutics. Cells, 12(1), 199. https://doi.org/10.3390/cells12010199.PMID:36611992;PMCID:PMC9818774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zha, G. F., Leng, J., Darshini, N., Shubhavathi, T., Vivek, H. K., Asiri, A. M., & Qin, H. L. (2017). Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents. Bioorganic & Medicinal Chemistry Letters, 27(20), 3148–55.

    Article  CAS  Google Scholar 

  8. Adu, J. K., Amengor, C. D. K., Ibrahim, N. M., Amaning-Danquah, C., OwusuAnsah, C., Gbadago, D. D., & Sarpong-Agyapong, J. (2020). Synthesis and in vitro antimicrobial and anthelminthic evaluation of naphtholic and phenolic azo dyes. Journal of Tropical Medicine, 2020, 8.

    Article  Google Scholar 

  9. Peters, L., Olson, L., Khu, D. T. K., Linnros, S., Le, N. K., Hanberger, H., Hoang, N. T. B., Tran, D. M., & Larsson, M. (2019). Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: A cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam. PLoS ONE., 14(5), e0215666. https://doi.org/10.1371/journal.pone.0215666

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dadgostar, P. (2019). Antimicrobial resistance: Implications and costs. Infection and Drug Resistance, 12, 3903–3910. https://doi.org/10.2147/IDR.S234610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jansen, W. T. M., Bruggen, J. T., Verhoef, J., & Fluit, A. C. (2006). Bacterial resistance: A sensitive issue: Complexity of the challenge and containment strategy in Europe. Drug Resistance Updates, 9(3), 123–133. https://doi.org/10.1016/j.drup.2006.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruiz, J. (2003). Mechanisms of resistance to quinolones: Target alterations, decreased accumulation and DNA gyrase protection. Journal of Antimicrobial Chemotherapy, 51(5), 1109–1117. https://doi.org/10.1093/jac/dkg222

    Article  CAS  PubMed  Google Scholar 

  13. Blondeau, J. M. (2004). Fluoroquinolones: Mechanism of action, classification, and development of resistance. Survey of Ophthalmology, 49(2), S73–S78. https://doi.org/10.1016/j.survophthal.2004.01.005

    Article  PubMed  Google Scholar 

  14. Jacoby, G. A. (2005). Mechanisms of resistance to quinolones. Clinical Infectious Diseases, 41, S120–S126. https://doi.org/10.1086/428052

    Article  CAS  PubMed  Google Scholar 

  15. Woodford, N., & Ellington, M. J. (2007). The emergence of antibiotic resistance by mutation. Clinical Microbiology & Infection, 13(1), P5-18. https://doi.org/10.1111/j.1469-0691.2006.01492.x

    Article  Google Scholar 

  16. Chaudhry, U., Ray, K., Bala, M., & Saluja, D. (2002). Mutation patterns in gyrA and parC genes of ciprofloxacin resistant isolates of Neisseria gonorrhoeae from India. Sexually Transmitted Infections, 78, 440–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohammed, H. H. H., Abbas, S. H., Abdelhafez, E. S. M. N., Berger, J. M., Mitarai, S., Arai, M., & Abuo-Rahma, G. E. D. A. (2019). Synthesis, molecular docking, antimicrobial evaluation, and DNA cleavage assay of new thiadiazole/oxadiazole ciprofloxacin derivatives. Monatshefte für Chemie—Chemical Monthly, 150, 1809–24. https://doi.org/10.1007/s00706-019-02478-4

    Article  CAS  Google Scholar 

  18. Feng, X., Zhang, Z., Li, X., Song, Y., Kang, J., Yin, D., & Duan, J. (2019). Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infection and Drug Resistance, 12, 261–72. https://doi.org/10.2147/IDR.S182272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alsughayer, A., Elassar, A. Z. A., Hasan, A. A., & Sagheer, A. F. (2021). Antibiotic resistance and drug modification: Synthesis, characterization and bioactivity of newly modified potent ciprofloxacin derivatives. Bioorganic Chemistry, 108, 104658. https://doi.org/10.1016/j.bioorg.2021.104658

    Article  CAS  PubMed  Google Scholar 

  20. Fedorowicz, J., & Saczewski, J. (2019). Modifications of quinolones and fluoroquinolones: Hybrid compounds and dual-action molecules. Monatshefte fuer Chemie, 149, 1199–1245. https://doi.org/10.1007/s00706-018-2215-x

    Article  CAS  Google Scholar 

  21. Sharma, P. C., Jain, A., & Jain, S. (2010). Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(4), 577–589. https://doi.org/10.3109/14756360903373350

    Article  CAS  PubMed  Google Scholar 

  22. Concilio, S., Sessa, L., & Petrone, A. M. (2017). Structure modification of an active azo-compound as a route to new antimicrobial compounds. Molecules, 22, 875. https://doi.org/10.3390/molecules22060875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghasemi, Z., Azizi, S., & Salehi, R. (2018). Synthesis of azo dyes possessing N-heterocycles and evaluation of their anticancer and antibacterial properties. Monatshefte fuer Chemie, 149, 149–157. https://doi.org/10.1007/s00706-017-2073-y

    Article  CAS  Google Scholar 

  24. de Souza, G. F. P., von Zuben, T. W., & Salles, A. G. J. (2018). A metal-catalyst-free oxidative coupling of anilines to aromatic azo compounds in water using bleach. Tetrahedron Letters, 59(42), 3753–3755. https://doi.org/10.1016/j.tetlet.2018.08.053

    Article  CAS  Google Scholar 

  25. Moglie, Y., Vitale, C., & Radivoy, G. (2008). Synthesis of azo compounds by nanosized iron-promoted reductive coupling of aromatic nitro compounds. Tetrahedron Letters, 49(11), 1828–1831. https://doi.org/10.1016/j.tetlet.2008.01.053

    Article  CAS  Google Scholar 

  26. Ude, Z., Flothkötter, N., Sheehan, G., Brennan, M., Kavanagh, K., & Marmion, C. J. (2021). Multi-targeted metallo-ciprofloxacin derivatives rationally designed and developed to overcome antimicrobial resistance. International Journal of Antimicrobial Agents, 58(6), 106449. https://doi.org/10.1016/j.ijantimicag.2021.106449

    Article  CAS  PubMed  Google Scholar 

  27. Miethke, M., Pieroni, M., & Weber, T. (2021). Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 5, 726–749. https://doi.org/10.1038/s41570-021-00313-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kyei, K. S., Akaranta, O., & Darko, G. (2020). Synthesis, characterization and antimicrobial activity of peanut skin extract-azo-compounds. Scientific African, 8, e00406. https://doi.org/10.1016/j.sciaf.2020.e00406

    Article  Google Scholar 

  29. Lee, J. J., Lee, W. J., & Choi, J. H. (2005). Synthesis and application of temporarily solubilised azo disperse dyes containing b sulphatoethylsulphonyl group. Dyes and Pigments, 65, 75–81.

    Article  CAS  Google Scholar 

  30. Cockerill, F.R. (2017) Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement. Wayne, PA: Clinical and Laboratory Standards Institute. https://clsi.org/standards/products/microbiology/documents/m100/

  31. El Maghraby, H. M., & Rabie, R. A. (2019). Ciprofloxacin resistance due to gyrA mutation in Pseudomonas aeruginosa isolates at Zagazig University Hospitals. Egyptian Journal of Medical Microbiology, 94(1), 5. https://doi.org/10.21608/ejmm.2018.285598

    Article  Google Scholar 

  32. Dumas, J. L., Van, D. C. A., & Perron, K. (2006). Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiology Letters, 254(2), 217–225. https://doi.org/10.1111/j.1574-6968.2005.00008.x

    Article  CAS  PubMed  Google Scholar 

  33. Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krieger, E., Joo, K., & Lee, J. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 77, 114–122. https://doi.org/10.1002/prot.22570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sada, M., Kimura, H., Nagasawa, N., Akagawa, M., Okayama, K., Shirai, T., Sunagawa, S., Kimura, R., Saraya, T., Ishii, H., Kurai, D., Tsugawa, T., Nishina, A., Tomita, H., Okodo, M., Hirai, S., Ryo, A., Ishioka, T., & Murakami, K. (2022). Molecular evolution of the Pseudomonas aeruginosa DNA Gyrase gyrA Gene. Microorganisms, 10(8), 1660. https://doi.org/10.3390/microorganisms10081660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nastasă, C., Vodnar, D. C., & Ionuţ, I. (2018). Antibacterial Evaluation and virtual screening of new thiazolyl-triazole schiff bases as potential DNA-gyrase inhibitors. International Journal of Molecular Sciences, 19(1), 222. https://doi.org/10.3390/ijms19010222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hashemi, N.S., Mojiri, M., Yazdani, K.P., Eskandari, S., Mohammadian, M., & Alavi, I., (2017) Prevalence of antibiotic resistance and blaIMP-1 gene among Pseudomonas aeruginosa strains isolated from burn and urinary tract infections in Isfahan, central Iran. Microbiology Research. 8(2), 59–63. https://www.mdpi.com/2036-7481/8/2/7295#

  38. Nouri, R., Ahangarzadeh, R. M., & Hasani, A. (2016). The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Brazilian Journal of Microbiology, 47(4), 925–930. https://doi.org/10.1016/j.bjm.2016.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, H., Liu, H., & Chuang, H. (2023). Correlation between antibiotic consumption and resistance of Pseudomonas aeruginosa in a teaching hospital implementing an antimicrobial stewardship program: A longitudinal observational study. Journal of Microbiology, Immunology, and Infection, 56(2), 337–343. https://doi.org/10.1016/j.jmii.2022.08.017

    Article  CAS  PubMed  Google Scholar 

  40. Salma, R., Dabboussi, F., Kassaa, I., Hamze, M., & Khudary, R. (2013). gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. Journal of Infection and Chemotherapy, 19(1), 77–81. https://doi.org/10.1007/s10156-012-0455-y

    Article  CAS  PubMed  Google Scholar 

  41. Reynolds, D., & Kollef, M. (2021). The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa Infections: an update. Drugs, 81(6), 747–760. https://doi.org/10.1007/s40265-021-01635-6

    Article  CAS  Google Scholar 

  42. Feng, X., Zhang, Z., Li, X., Song, Y., Kang, J., Yin, D., & Duan, J. (2019). Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infection and Drug Resistance, 8(12), 261–72. https://doi.org/10.2147/2FIDR.S182272

    Article  Google Scholar 

  43. Shams, H. Z., Mohareb, R. M., Helal, M. H., & Mahmoud, A. E. S. (2011). Design and synthesis of novel antimicrobial acyclic and heterocyclic dyes and their precursors for dyeing and/or textile finishing based on 2-N-acylamino-4,5,6,7-tetrahydro-benzo[b]thiophene systems. Molecules, 16(8), 6271–305. https://doi.org/10.3390/molecules16086271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jarrahpour, A. A., Motamedifar, M., & Pakshir, K. (2004). Synthesis of novel azo Schiff bases and their antibacterial and antifungal activities. Molecules, 9(10), 815–824. https://doi.org/10.3390/91000815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Di, M. M., Sessa, L., & Di, M. M. (2022). Azobenzene as antimicrobial molecules. Molecules, 27(17), 5643. https://doi.org/10.3390/molecules27175643

    Article  CAS  Google Scholar 

  46. Al-Jumaily, E. F., & Abd, N. Q. (2017). Effect of quinoline-2-one derivatives on the gene expression of mexB of Pseudomonas aeruginosa. Biomedical and Pharmacology Journal. https://doi.org/10.13005/bpj/1255

    Article  Google Scholar 

Download references

Acknowledgements

We would like to extend our sincere appreciation to the Department of Biology et al. Muthanna University in Iraq for generously providing us with the facilities necessary to carry out this research.

Funding

This work has received no financial support or funding.

Author information

Authors and Affiliations

Authors

Contributions

YAJA: Conceptualization, Supervision, Methodology and Writing—review & editing, DAA: Methodology, Validation, and Writing–original draft, MGM: Visualization and Writing—review & editing, ZIK: Methodology and Writing original draft.

Corresponding author

Correspondence to Yasir Adil Jabbar Alabdali.

Ethics declarations

Conflict of interest

The authors claim no relevant conflicts of interest that affect the research.

Ethical Approval

All procedures were conducted in strict adherence to the ethical standards of Al Muthanna University for the treatment of research subjects in Samawah, Iraq, following ethics- approval letter number 4513 in 4/11/2021.

Informed Consent

Written informed consent has been received from all person’s individuals concerned in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alabdali, Y.A.J., Azeez, D.A., Munahi, M.G. et al. Molecular Analysis of Pseudomonas aeruginosa Isolates with Mutant gyrA Gene and Development of a New Ciprofloxacin Derivative for Antimicrobial Therapy. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01076-y

Keywords

Navigation