Log in

Targeting Ferroptosis as a Therapeutic Implication in Lung Cancer Treatment by a Novel Naphthoquinone Inducer: Juglone

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lung cancer has garnered significant global attention as a result of its escalating rates of mortality and morbidity, necessitating focused interventions to mitigate its impact. The primary aim of this work was to investigate the anticancer activity of juglone in A549 cells, specifically focusing on its role in mediating ferroptosis. We conducted an investigation involving a range of cytotoxic and morphological assays, such as cell viability assay, fluorescence microscopic analysis, flow cytometry, and ROS assay. The findings demonstrated that the cytotoxicity of juglone was around 18.5 μM. Furthermore, the chemical was found to promote apoptotic activity as observed through fluorescent microscopic inspection and morphological analysis. In addition, the levels of ROS, MDA, GSH, ferrous iron, and colony formation study demonstrated a significant increase, indicating a correlation with the occurrence of ferroptosis. Hence, juglone exhibits promise as a prospective therapeutic drug in the treatment of lung cancer. Therefore, we put forward that the utilization of ferroptosis as a therapeutic approach for lung cancer may yield significant efficacy and warrants further investigation in subsequent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Khafaei, M., Miri, A., Kiani, E., Danesh, E., & Naderi, M. (2021). Early diagnostic biomarkers of lung cancer: A review study. Central Asian Journal of Medical and Pharmaceutical Sciences Innovation, 1(3), 114–130. https://doi.org/10.22034/CAJMPSI.2021.03.02

    Article  Google Scholar 

  2. Thandra, K. C., Barsouk, A., Saginala, K., Aluru, J. S., & Barsouk, A. (2021). Epidemiology of lung cancer. Contemporary Oncology (Pozn). https://doi.org/10.5114/wo.2021.103829

    Article  Google Scholar 

  3. Hassannia, B., Vandenabeele, P., & Vanden Berghe, T. (2019). Targeting ferroptosis to iron out cancer. Cancer Cell. https://doi.org/10.1016/j.ccell.2019.04.002

    Article  PubMed  Google Scholar 

  4. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., & Morrison, B. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, W. S., & Stockwell, B. R. (2008). Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry and Biology, 15(3), 234–245. https://doi.org/10.1016/j.chembiol.2008.02.010

    Article  CAS  PubMed  Google Scholar 

  6. Brigelius-Flohé, R., & Maiorino, M. (2013). Glutathione peroxidases. Biochimica et Biophysica Acta General Subjects. https://doi.org/10.1016/j.bbagen.2012.11.020

    Article  Google Scholar 

  7. Hassannia, B., Wiernicki, B., Ingold, I., Qu, F., Van Herck, S., Tyurina, Y. Y., & Berghe, T. V. (2018). Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. Journal of Clinical Investigation, 128(8), 3341–3355. https://doi.org/10.1172/JCI99032

    Article  PubMed  PubMed Central  Google Scholar 

  8. Han, L., Lin, Q., Liu, G., Han, D., Niu, L., & Su, D. (2019). Catechin inhibits glycated phosphatidylethanolamine formation by trap** dicarbonyl compounds and forming quinone. Food and Function, 10(5), 2491–2503. https://doi.org/10.1039/c9fo00155g

    Article  CAS  PubMed  Google Scholar 

  9. Hyun, D. H. (2020). Insights into the new cancer therapy through redox homeostasis and metabolic shifts. Cancers, 12(7), 1–18. https://doi.org/10.3390/cancers12071822

    Article  CAS  Google Scholar 

  10. Luo, Q., Hu, K., Chen, F., Gan, F.-J., Leng, Y.-X., Chen, X.-M., & Sun, S.-H. (2019). Juglone induces michigan cancer foundation-7 human breast cancer cells apoptosis through Bcl-2-associated X protein/B-cell lymphoma/leukemia-2 signal Way. Pharmacognosy Magazine, 15(65), 573. https://doi.org/10.4103/pm.pm_604_18

    Article  CAS  Google Scholar 

  11. Ahmad, T., & Suzuki, Y. J. (2019). Juglone in oxidative stress and cell signaling. Antioxidants. https://doi.org/10.3390/antiox8040091

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang, X., Hua, P., He, C., & Chen, M. (2022). Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharmaceutica Sinica. B, 12(9), 3567–3593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kavithaa, K., Paulpandi, M., Ramya, S., Ramesh, M., Balachandar, V., Ramasamy, K., & Narayanasamy, A. (2021). Sitosterol-fabricated chitosan nanocomplex induces apoptotic cell death through mitochondrial dysfunction in lung cancer animal model: An enhanced synergetic drug delivery system for lung cancer therapy. New Journal of Chemistry, 45(20), 9251–9263. https://doi.org/10.1039/d1nj00913c

    Article  CAS  Google Scholar 

  14. Ramya, S., Paulpandi, M., Kavithaa, K., Saranya, T., Winster, H., Balachandar, V., & Narayanasamy, A. (2021). Fabatin-loaded silica nanoparticle-induced apoptosisviamitochondrial dysfunction: Targeting the PI3K/AKT molecular pathway as a therapeutic implication against triple negative breast cancer. New Journal of Chemistry, 45(38), 17847–17861. https://doi.org/10.1039/d1nj02922c

    Article  CAS  Google Scholar 

  15. Chen, P., Wu, Q., Feng, J., Yan, L., Sun, Y., Liu, S., **ang, Y., Zhang, M., Pan, T., Chen, X., & Duan, T. (2020). Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduction and Targeted Therapy, 5(1), 1–11. https://doi.org/10.1038/s41392-020-0149-3

    Article  CAS  Google Scholar 

  16. Saranya, T., Kavithaa, K., Paulpandi, M., Ramya, S., Preethi, S., Balachandar, V., & Narayanasamy, A. (2020). Enhanced apoptogenesis and oncogene regulatory mechanism of troxerutin in triple negative breast cancer cells. Toxicology Research, 9(3), 230–238. https://doi.org/10.1093/TOXRES/TFAA029

    Article  PubMed  PubMed Central  Google Scholar 

  17. Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: An evolving paradigm. Nature Reviews Cancer. https://doi.org/10.1038/nrc3599

    Article  PubMed  Google Scholar 

  18. Su, Z., Yang, Z., **e, L., Dewitt, J. P., & Chen, Y. (2016). Cancer therapy in the necroptosis era. Cell Death and Differentiation. https://doi.org/10.1038/cdd.2016.8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Okada, H., & Mak, T. W. (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nature Reviews Cancer. https://doi.org/10.1038/nrc1412

    Article  PubMed  Google Scholar 

  20. Zhang, Y. Y., Ni, Z. J., Elam, E., Zhang, F., Thakur, K., Wang, S., Zhang, J. G., & Wei, Z. J. (2021). Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells. Food and Function, 12(11), 4947–4959. https://doi.org/10.1039/d1fo00790d

    Article  CAS  PubMed  Google Scholar 

  21. Kiran Aithal, B., Sunil Kumar, M. R., Nageshwar Rao, B., Udupa, N., & Satish Rao, B. S. (2009). Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell Biology International, 33(10), 1039–1049. https://doi.org/10.1016/j.cellbi.2009.06.018

    Article  CAS  PubMed  Google Scholar 

  22. Srinivas, P., Gopinath, G., Banerji, A., Dinakar, A., & Srinivas, G. (2004). Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Molecular Carcinogenesis, 40(4), 201–211. https://doi.org/10.1002/mc.20031

    Article  CAS  PubMed  Google Scholar 

  23. Sharma, V., Anderson, D., & Dhawan, A. (2012). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis, 17(8), 852–870. https://doi.org/10.1007/s10495-012-0705-6

    Article  CAS  PubMed  Google Scholar 

  24. Dadashpour, M., Firouzi-Amandi, A., Pourhassan-Moghaddam, M., Maleki, M. J., Soozangar, N., Jeddi, F., Nouri, M., Zarghami, N., & Pilehvar-Soltanahmadi, Y. (2018). Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Materials Science and Engineering C, 92, 902–912. https://doi.org/10.1016/j.msec.2018.07.053

    Article  CAS  PubMed  Google Scholar 

  25. Sun, Y., Zheng, Y., Wang, C., & Liu, Y. (2018). Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells article. Cell Death and Disease, 9(7), 1–15. https://doi.org/10.1038/s41419-018-0794-4

    Article  CAS  Google Scholar 

  26. Conrad, M., Kagan, V. E., Bayir, H., Pagnussat, G. C., Head, B., Traber, M. G., & Stockwell, B. R. (2018). Regulation of lipid peroxidation and ferroptosis in diverse species. Genes and Development. https://doi.org/10.1101/gad.314674.118

    Article  PubMed  PubMed Central  Google Scholar 

  27. Imai, H., Matsuoka, M., Kumagai, T., Sakamoto, T., & Koumura, T. (2017). Lipid peroxidation-dependent cell death regulated by GPX4 and ferroptosis. Current Topics in Microbiology and Immunology, 403, 143–170. https://doi.org/10.1007/82_2016_508

    Article  CAS  PubMed  Google Scholar 

  28. Ma, S., Henson, E. S., Chen, Y., & Gibson, S. B. (2016). Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death & Disease, 7(7), e2307. https://doi.org/10.1038/cddis.2016.208

    Article  CAS  Google Scholar 

  29. Mou, Y., Wang, J., Wu, J., He, D., Zhang, C., Duan, C., & Li, B. (2019). Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. Journal of Hematology and Oncology. https://doi.org/10.1186/s13045-019-0720-y

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liang, H., Yoo, S. E., Na, R., Walter, C. A., Richardson, A., & Ran, Q. (2009). Ran, Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions. Journal of Biological Chemistry, 284, 30836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ni, J., Chen, K., Zhang, J., & Zhang, X. (2021). Inhibition of GPX4 or mTOR overcomes resistance to Lapatinib via promoting ferroptosis in NSCLC cells. Biochemical and Biophysical Research Communications, 567, 154–160. https://doi.org/10.1016/j.bbrc.2021.06.051

    Article  CAS  PubMed  Google Scholar 

  32. Khoubnasab Jafari, M., Ansarin, K., & Jouyban, A. (2015). Comments on “Use of malondialdehyde as a biomarker for assesing oxidative stress in different disease pathologies: A review.” Iranian Journal of Public Health., 44(5), 714–715.

    PubMed  PubMed Central  Google Scholar 

  33. Hou, W., **e, Y., Song, X., Sun, X., Lotze, M. T., Zeh, H. J., Kang, R., & Tang, D. (2016). Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 12, 1425–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song, X., Zhu, S., Chen, P., Hou, W., Wen, Q., Liu, J., **e, Y., Liu, J., Klionsky, D. J., Kroemer, G., Lotze, M. T., Zeh, H. J., Kang, R., & Tang, D. (2018). AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system xcactivity. Current Biology, 28, 2388–2399.

    Article  CAS  PubMed  Google Scholar 

  35. Du, Y., Zhao, H. C., Zhu, H. C., **, Y., & Wang, L. (2021). Ferroptosis is involved in the anti-tumor effect of lycorine in renal cell carcinoma cells. Oncology Letters. https://doi.org/10.3892/ol.2021.13042

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JD and DY— involved in manuscript preparation and working the scientific part of the manuscript. DY framed the work and revised the manuscript for submission.

Corresponding author

Correspondence to Dianxi Yang.

Ethics declarations

Competing Interests

All the authors had declared no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Krishnamoorthy, K., Ramabhai, V. et al. Targeting Ferroptosis as a Therapeutic Implication in Lung Cancer Treatment by a Novel Naphthoquinone Inducer: Juglone. Mol Biotechnol 66, 1071–1081 (2024). https://doi.org/10.1007/s12033-023-01004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01004-6

Keywords

Navigation