Log in

Post-Vaccination Delivery of CpG ODNs Enhances the Th2-Associated Protective Immunity of the Smallpox DNA Vaccine

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Potential threat of smallpox bioterrorism and concerns related to the adverse effects of currently licensed live-virus vaccines suggest the need to develop novel vaccines with better efficacy against smallpox. Use of DNA vaccines containing specific antigen-encoding plasmids prevents the risks associated with live-virus vaccines, offering a promising alternative to conventional smallpox vaccines. In this study, we investigated the efficiency of toll-like receptor (TLR) ligands in enhancing the immunogenicity of smallpox DNA vaccines. BALB/c mice were immunized with a DNA vaccine encoding the vaccinia virus L1R protein, along with the cytosine–phosphate–guanine (CpG) motif as a vaccine adjuvant, and their immune response was analyzed. Administration of B-type CpG oligodeoxynucleotides (ODNs) as TLR9 ligands 24 h after DNA vaccination enhanced the Th2-biased L1R-specific antibody immunity in mice. Moreover, B-type CpG ODNs improved the protective effects of the DNA vaccine against the lethal Orthopoxvirus challenge. Therefore, use of L1R DNA vaccines with CpG ODNs as adjuvants is a promising approach to achieve effective immunogenicity against smallpox infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garcel, A., Crance, J. M., Drillen, R., Garin, D., & Favier, A. L. (2007). Genomic sequence of a clonal isolate of the vaccinia virus Lister strain employed for smallpox vaccination in France and its comparison to other orthopoxviruses. Journal Of General Virology, 88, 1906–1916.

    Article  CAS  PubMed  Google Scholar 

  2. Meyer, H., Ehmann, R., & Smith, G. L. (2020). Smallpox in the post-eradication era. Viruses, 12, 138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sinclair, R., Boone, S. A., Greenberg, D., Keim, P., & Gerba, C. P. (2008). Persistence of category a select agents in the environment. Appl Environ Microbio, 74, 555–563.

    Article  CAS  Google Scholar 

  4. Kennedy, R. B., Ovsyannikova, I., & Poland, G. A. (2009). Smallpox vaccines for biodefense. Vaccine, 27, D73–D79.

    Article  CAS  PubMed  Google Scholar 

  5. Verardi, P. H., Titong, A., & Hagen, C. J. (2012). A vaccinia virus renaissance; new vaccine and immunotherapeutic uses after smallpox eradication. Hum Vaccines Immunother, 8, 961–970.

    Article  CAS  Google Scholar 

  6. Sanchez-Sampedro, L., Perdiguero, B., Mejias-Perez, E., Garcia-Arriaza, J., Pilato, M. D., & Esteban, M. (2015). The evolution of poxvirus vaccines. Viruses, 7, 1726–1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Golden, J. W., & Hooper, J. W. (2011). The strategic use of novel smallpox vaccines in the post-eradication world. Expert Review Of Vaccines, 10, 1021–1035.

    Article  PubMed  Google Scholar 

  8. Hobernik, D., & Bros, M. (2018). DNA vaccines-how far from clinical use. International Journal Of Molecular Sciences, 19, 3605.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rauch, S., Jansy, E., Schmidt, K. E., & Petsch, B. (2018). New vaccine technologies to combat outbreak situations. Frontiers In Immunology, 19, 1963.

    Article  Google Scholar 

  10. Dupuy, L. C., & Schmaljohn, C. S. (2009). DNA vaccines for biodefense. Expert Review Of Vaccines, 8, 1739–1754.

    Article  CAS  PubMed  Google Scholar 

  11. Hooper, J. W., Thompson, E., Wilhelmsen, C., Zimmerman, M., Ichou, M. A., Steffin, S. E., Schmaljohn, C. S., Schmaljohn, A. L., & Jahrling, P. B. (2004). Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. Journal Of Virology, 78, 4433–4443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Golden, J. W., & Hooper, J. W. (2008). Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine. Virology, 377, 19–29.

    Article  CAS  PubMed  Google Scholar 

  13. Sakhatskyy, P., Wang, S., Zhang, C., Chou, T., Kishko, M., & Lu, S. (2008). Immunogenicity and protection efficiency of subunit-based smallpox vaccines using variola major antigens. Virology, 371, 98–107.

    Article  CAS  PubMed  Google Scholar 

  14. Martinez, O., Miranda, E., Ramirez, M., Santos, S., Rivera, C., Vazquez, L., Sanchez, T., Tremblay, R. L., Rios-Olivares, E., & Otero, M. (2015). Immunomodulator-based enhancement of anti smallpox immune responses. PLoS One, 10, e0123113.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim, N. Y., Chang, D. S., Hur, G. H., Lee, T. Y., Yang, J. M., & Shin, S. (2017). Immunogenicity and protective efficiency in mice of a smallpox DNA vaccine candidate. J Bioterr Biodef, 8, 2.

    Article  Google Scholar 

  16. Li, L., & Petrovsky, N. (2017). Molecular adjuvants for DNA vaccines. Current Issues In Molecular Biology, 22, 17–40.

    Article  PubMed  Google Scholar 

  17. Lee, J., Kumar, S. H., Jhan, Y. Y., & Bishop, C. J. (2018). Engineering DNA vaccines against infectious diseases. Acta Biomaterialia, 80, 31–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reed, S. G., Tomai, M., & Gale, M. J. (2020). New horizons in adjuvants for vaccine development. Current Opinion In Immunology, 65, 97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luncher, M., Reinke, S., & Milicic, A. (2021). TLR agonists as vaccine adjuvants targeting cancer and infectious diseases. Pharmaceutics, 13, 142.

    Article  Google Scholar 

  20. Toussi, D. N. A., & Massari, P. (2014). Immune adjuvant effect of molecularly toll-like receptor ligands. Vaccines, 2, 323–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsieh, S. M., Liu, M. C., Chen, Y. H., Lee, W. S., Hwang, S. J., Cheng, S. H., Ko, W. C., Hwang, K. P., Wang, N. C., Lee, Y. L., Lin, Y. L., Shih, S. R., Huang, C. G., Liao, C. C., Liang, J. J., Chang, C. S., Chen, C., Lien, C. E., Tai, I. C., & Lin, T. Y. (2021). Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: Interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir Med, 9, 1396–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Panahi, Z., Abdoli, A., Mosayebi, G., Mahdavi, M., & Bahrami, F. (2018). Subcutaneous administration CpG-ODN act as a potent adjuvant for an HIV-1-tat based vaccine candidate to elicit cellular immunity in BALB/c mice. Biotechnology Letters, 40, 527–533.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, H., Yan, M., Tang, Y., & Diao, Y. (2019). Evaluation of immunogenicity and protective efficiency of a CpG-adjuvanted DNA vaccine against Tembusu virus. Veterinary Immunology And Immunopathology, 218, 109953.

    Article  CAS  PubMed  Google Scholar 

  24. Yu, Y., Li, N., Ma, Y., Wang, S., Yu, W., & Sun, Z. (2013). Three types of human CpG motifs differentially modulate and augment immunogenicity of nonviral and viral replicon DNA vaccines as built-in adjuvants. European Journal Of Immunology, 43, 228–239.

    Article  CAS  PubMed  Google Scholar 

  25. Shirota, H., & Klinman, D. M. (2014). Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Review Of Vaccines, 13, 299–312.

    Article  CAS  PubMed  Google Scholar 

  26. Scheiermann, J., & Klinman, D. M. (2014). Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine, 32, 6377–6387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pulendran, B., Arunachalam, P. S., & O’Hagan, D. T. (2021). Emerging concepts in the science of vaccine adjuvants. Nature Rev, 20, 454–475.

    CAS  Google Scholar 

  28. Reeman, S., Gates, J. A., Pulford, D. J., Krieg, A., & Ulaeto, D. O. (2017). Protection of mice from lethal vaccinia virus infection by vaccinia virus protein subunits with a CpG adjuvant. Viruses, 9, 378.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Berhanu, A., Wilson, R. L., Watts, K., King, D. S., Warren, T. K., Lund, S. A., Brown, L. L., Krupkin, A. K., VanderMay, E., Weimers, W., Honeychurch, K. M., Grosenbach, D. W., Jones, K. F., & Hruby, D. E. (2008). Vaccination of Balb/c mice with Escherichia coli-expressed vaccinia virus proteins A27L, B5R, and D8L protects mice from lethal vaccinia virus challenge. Journal Of Virology, 82, 3517–3529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Voigt, E. A., Kennedy, R. B., & Poland, G. A. (2016). Defending against smallpox: A focus on vaccines. Expert Review Of Vaccines, 15, 1197–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kayraklioglu, N., Horuluoglu, B., & Klinman, D. M. (2021). CpG oligonucleotides as vaccine adjuvant. Methods In Molecular Biology, 2197, 51–85.

    Article  CAS  PubMed  Google Scholar 

  32. Kojima, Y., **n, K., Ooki, T., Hamajima, K., Oikawa, T., Shinoda, K., Ozaki, T., Hoshino, Y., Jounal, N., Nakazawa, M., Klinman, D., & Okuda, K. (2002). Adjuvant effect of multi-CpG motifs on an HIV-1 DNA vaccine. Vaccine, 20, 2857–2865.

    Article  CAS  PubMed  Google Scholar 

  33. Fong, C. N., Americo, J. L., Lustig, S., Huggins, J. W., Smith, S. K., Damon, I., Resch, W., Earl, P. L., Klinman, D. M., & Moss, B. (2007). Adjuvant-enhanced antibody responses to recombinant proteins correlates with protection of mice and monkeys to orthopoxvirus. Vaccine, 25, 2787–2799.

    Article  Google Scholar 

  34. Vollmer, J., Weeratna, R., Payette, P., Jurk, M., Schetter, C., Laucht, M., Wader, T., Tluk, S., Liu, M., Davis, H. L., & Krieg, A. M. (2004). Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. European Journal Of Immunology, 34, 251–262.

    Article  CAS  PubMed  Google Scholar 

  35. Sender, R. A., Darrah, P. A., & Roederer, M. (2008). T cell quality in memory and protection: Implications for vaccine design. Nature Reviews Immunology, 8, 247–258.

    Article  Google Scholar 

  36. Putlitz, J. J., Stremmel, P. W., & Wands, J. R. (2003). CpG immune-stimulatory motifs enhance humoral immune responses against hepatitis C virus core protein after DNA-based immunization. Archives Of Virology, 148, 435–448.

    Article  PubMed  Google Scholar 

  37. Tross, D., & Klinman, D. M. (2008). Effect of CpG oligonucleotides on vaccine-induced B cell memory. The Journal Of Immunology, 181, 5785–5790.

    Article  CAS  PubMed  Google Scholar 

  38. Jegerlehner, A., Maurer, P., Bessan, J., Hinton, H. J., Kopf, M., & Bachmann, M. (2007). TLR9 signaling in B cells determines class switch recombination to IgG2a. The Journal Of Immunology, 178, 2415–2420.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Agency for Defense Development, Republic of Korea (UD180041GD, 211555-912664201).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Na Young Kim, Sungho Shin. Performed the experiments: Min Hoon Lee, Euni Sim, Hong Seok Choi, Sungyoul Hong. Analyzed the data: Min Hoon Lee, Na Young Kim, Hong Seok Choi, Jun Young Choi, Young Kee Shin, Chi Ho Yu, Se Hun Gu, Dong Hyun Song, Gyueng Haeng Hur, Sungho Shin. Contributed reagents/materials/analysis tools: Jun Young Choi. Wrote the paper: Sungho Shin.

Corresponding author

Correspondence to Sungho Shin.

Ethics declarations

Conflict of Interest

Na Young Kim, Euni Sim, Jun Young Choi, and Young Kee Shin currently hold stock and Min Hoon Lee, Hong Seok Choi, Na Young Kim, and Jun Young Choi hold stock options in ABION Inc.

Ethics Approval

All animal studies were conducted under protocols approved by the Institutional Animal Care and Use Committee of Institution (approval ID: SNU001254, IACUC SNU-190325-1).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.H., Choi, H.S., Kim, N.Y. et al. Post-Vaccination Delivery of CpG ODNs Enhances the Th2-Associated Protective Immunity of the Smallpox DNA Vaccine. Mol Biotechnol 66, 1718–1726 (2024). https://doi.org/10.1007/s12033-023-00800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00800-4

Keywords

Navigation