Log in

Novel Strategies to Combat Bacterial Biofilms

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Biofilms are considered as a severe problem in the treatment of bacterial infections; their development causes some noticeable resistance to antibacterial agents. Biofilms are responsible for at least two-thirds of all infections, displaying promoted resistance to classical antibiotic treatments. Therefore, finding new alternative therapeutic approaches is essential for the treatment and inhibition of biofilm-related infections. Therefore, this review aims to describe the potential therapeutic strategies that can inhibit bacterial biofilm development; these include the usage of antiadhesion agents, AMPs, bacteriophages, QSIs, aptamers, NPs and PNAs, which can prevent or eradicate the formation of biofilms. These antibiofilm agents represent a promising therapeutic target in the treatment of biofilm infections and development of a strong capability to interfere with different phases of the biofilm development, including adherence, polysaccharide intercellular adhesion (PIA), quorum sensing molecules and cell-to-cell connection, bacterial aggregation, planktonic bacteria killing and host-immune response modulation. In addition, these components, in combination with antibiotics, can lead to the development of some kind of powerful combined therapy against bacterial biofilm-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Høiby, N., Bjarnsholt, T., Moser, C., Bassi, G., Coenye, T., Donelli, G., Hall-Stoodley, L., Holá, V., Imbert, C., & Kirketerp-Møller, K. (2015). ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clinical Microbiology & Infection, 21, S1–S25.

    Google Scholar 

  2. Evans, J. J., & Bolz, D. D. (2019). Regulation of virulence and antibiotic resistance in Gram-positive microbes in response to cell wall-active antibiotics. Current Opinion in Infectious Diseases, 32, 217–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T.-F., & Alarcon, E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 4, e01067.

    PubMed  PubMed Central  Google Scholar 

  4. Batoni, G., Maisetta, G., & Esin, S. (2016). Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858, 1044–1060.

    CAS  Google Scholar 

  5. Lynch, A. S., & Robertson, G. T. (2008). Bacterial and fungal biofilm infections. Annual Review of Medicine, 59, 415–428.

    CAS  PubMed  Google Scholar 

  6. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2, 95–108.

    CAS  PubMed  Google Scholar 

  7. Costerton, J. W., Cheng, K., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., & Marrie, T. J. (1987). Bacterial biofilms in nature and disease. Annual Reviews in Microbiology, 41, 435–464.

    CAS  Google Scholar 

  8. Lei, M. G., Gupta, R. K., & Lee, C. Y. (2017). Proteomics of Staphylococcus aureus biofilm matrix in a rat model of orthopedic implant-associated infection. PLoS ONE, 12, e0187981.

    PubMed  PubMed Central  Google Scholar 

  9. Watnick, P., & Kolter, R. (2000). Biofilm, city of microbes. Journal of Bacteriology, 182, 2675–2679.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Galdiero, E., Lombardi, L., Falanga, A., Libralato, G., Guida, M., & Carotenuto, R. (2019). Biofilms: Novel strategies based on antimicrobial peptides. Pharmaceutics, 11, 322.

    CAS  PubMed Central  Google Scholar 

  11. Staudt, C., Horn, H., Hempel, D., & Neu, T. (2004). Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnology and Bioengineering, 88, 585–592.

    CAS  PubMed  Google Scholar 

  12. Dibdin, G. H., Assinder, S. J., Nichols, W. W., & Lambert, P. A. (1996). Mathematical model of β-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released β-lactamases. Journal of Antimicrobial Chemotherapy, 38, 757–769.

    CAS  PubMed  Google Scholar 

  13. Bhagirath, A. Y., Li, Y., Somayajula, D., Dadashi, M., Badr, S., & Duan, K. (2016). Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulmonary Medicine, 16, 1–22.

    Google Scholar 

  14. Ebbensgaard, A., Mordhorst, H., Overgaard, M. T., Nielsen, C. G., Aarestrup, F. M., & Hansen, E. B. (2015). Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria. PLoS ONE, 10, e0144611.

    PubMed  PubMed Central  Google Scholar 

  15. Kåhrström, C. T. (2013). Entering a post-antibiotic era? Nature Reviews Microbiology, 11, 146–146.

    PubMed  Google Scholar 

  16. Di Somma, A., Moretta, A., Canè, C., Cirillo, A., & Duilio, A. (2020). Antimicrobial and antibiofilm peptides. Biomolecules, 10, 652.

    CAS  PubMed Central  Google Scholar 

  17. Ferriol-González, C., & Domingo-Calap, P. (2020). Phages for biofilm removal. Antibiotics, 9, 268.

    PubMed Central  Google Scholar 

  18. Haque, S., Ahmad, F., Dar, S. A., Jawed, A., Mandal, R. K., Wahid, M., Lohani, M., Khan, S., Singh, V., & Akhter, N. (2018). Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microbial Pathogenesis, 121, 293–302.

    CAS  PubMed  Google Scholar 

  19. Shatila, F., Yaşa, İ, & Yalçın, H. (2020). Inhibition of Salmonella enteritidis biofilms by Salmonella invasion protein-targeting aptamer. Biotechnology Letters. https://doi.org/10.1007/s10529-020-02920-2

    Article  PubMed  Google Scholar 

  20. Fulaz, S., Vitale, S., Quinn, L., & Casey, E. (2019). Nanoparticle–biofilm interactions: The role of the EPS matrix. Trends in Microbiology, 27, 915–926.

    CAS  PubMed  Google Scholar 

  21. Narenji, H., Teymournejad, O., Rezaee, M. A., Taghizadeh, S., Mehramuz, B., Aghazadeh, M., Asgharzadeh, M., Madhi, M., Gholizadeh, P., Ganbarov, K., Yousefi, M., Pakravan, A., Dal, T., Ahmadi, R., & Samadi Kafil, H. (2020). Antisense peptide nucleic acids againstftsZ andefaA genes inhibit growth and biofilm formation of Enterococcus faecalis. Microbial Pathogenesis, 139, 103907.

    CAS  PubMed  Google Scholar 

  22. Arias, C. A., & Murray, B. E. (2009). Antibiotic-resistant bugs in the 21st century—A clinical super-challenge. New England Journal of Medicine, 360, 439–443.

    CAS  PubMed  Google Scholar 

  23. Wood, L. F., Leech, A. J., & Ohman, D. E. (2006). Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22 (AlgT) and the AlgW and Prc proteases. Molecular Microbiology, 62, 412–426.

    CAS  PubMed  Google Scholar 

  24. Wiens, J. R., Vasil, A. I., Schurr, M. J., & Vasil, M. L. (2014). Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by Pseudomonas aeruginosa. MBio. https://doi.org/10.1128/mBio.01010-13

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bhattacharyya, P., Agarwal, B., Goswami, M., Maiti, D., Baruah, S., & Tribedi, P. (2018). Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie van Leeuwenhoek, 111, 89–99.

    CAS  PubMed  Google Scholar 

  26. Ali, S. G., Ansari, M. A., Alzohairy, M. A., Alomary, M. N., AlYahya, S., Jalal, M., Khan, H. M., Asiri, S. M. M., Ahmad, W., & Mahdi, A. A. (2020). Biogenic gold nanoparticles as potent antibacterial and antibiofilm nano-antibiotics against Pseudomonas aeruginosa. Antibiotics, 9, 100.

    CAS  PubMed Central  Google Scholar 

  27. Kim, H.-S., Lee, S.-H., Byun, Y., & Park, H.-D. (2015). 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Science and Reports, 5, 8656.

    CAS  Google Scholar 

  28. Bahari, S., Zeighami, H., Mirshahabi, H., Roudashti, S., & Haghi, F. (2017). Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. Journal of Global Antimicrobial Resistance, 10, 21–28.

    PubMed  Google Scholar 

  29. De la Fuente-Núñez, C., Reffuveille, F., Fernández, L., & Hancock, R. E. (2013). Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Current Opinion in Microbiology, 16, 580–589.

    PubMed  Google Scholar 

  30. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8, 881.

    PubMed  PubMed Central  Google Scholar 

  31. Beloin, C., Valle, J., Latour-Lambert, P., Faure, P., Kzreminski, M., Balestrino, D., Haagensen, J. A., Molin, S., Prensier, G., & Arbeille, B. (2004). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Molecular Microbiology, 51, 659–674.

    CAS  PubMed  Google Scholar 

  32. Klausen, M., Aaes-Jørgensen, A., Molin, S., & Tolker-Nielsen, T. (2003). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Molecular Microbiology, 50, 61–68.

    CAS  PubMed  Google Scholar 

  33. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jørgensen, A., Molin, S., & Tolker-Nielsen, T. (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology, 48, 1511–1524.

    CAS  PubMed  Google Scholar 

  34. Toutain, C. M., Caizza, N. C., Zegans, M. E., & O’Toole, G. A. (2007). Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Research in Microbiology, 158, 471–477.

    CAS  PubMed  Google Scholar 

  35. Watnick, P. I., & Kolter, R. (1999). Steps in the development of a Vibrio cholerae El Tor biofilm. Molecular Microbiology, 34, 586–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmidt, J., Müsken, M., Becker, T., Magnowska, Z., Bertinetti, D., Möller, S., Zimmermann, B., Herberg, F. W., Jänsch, L., & Häussler, S. (2011). The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling. PLoS ONE, 6, e18184.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hadjifrangiskou, M., Gu, A. P., Pinkner, J. S., Kostakioti, M., Zhang, E. W., Greene, S. E., & Hultgren, S. J. (2012). Transposon mutagenesis identifies uropathogenic Escherichia coli biofilm factors. Journal of Bacteriology, 194, 6195–6205.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Beloin, C., Roux, A., & Ghigo, J.-M. (2008). Escherichia coli biofilms. In Bacterial biofilms. (pp. 249–289). Springer.

    Google Scholar 

  39. Anderson, G. G., Palermo, J. J., Schilling, J. D., Roth, R., Heuser, J., & Hultgren, S. J. (2003). Intracellular bacterial biofilm-like pods in urinary tract infections. Science, 301, 105–107.

    CAS  PubMed  Google Scholar 

  40. Waksman, G., & Hultgren, S. J. (2009). Structural biology of the chaperone–usher pathway of pilus biogenesis. Nature Reviews Microbiology, 7, 765–774.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Spurbeck, R. R., Stapleton, A. E., Johnson, J. R., Walk, S. T., Hooton, T. M., & Mobley, H. L. (2011). Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of ygi and yad fimbriae. Infection and Immunity, 79, 4753–4763.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Thumbikat, P., Berry, R. E., Zhou, G., Billips, B. K., Yaggie, R. E., Zaichuk, T., Sun, T.-T., Schaeffer, A. J., & Klumpp, D. J. (2009). Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathogens, 5, e1000415.

    PubMed  PubMed Central  Google Scholar 

  43. Cegelski, L., Pinkner, J. S., Hammer, N. D., Cusumano, C. K., Hung, C. S., Chorell, E., Åberg, V., Walker, J. N., Seed, P. C., & Almqvist, F. (2009). Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chemical Biology, 5, 913–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Klebensberger, J., Birkenmaier, A., Geffers, R., Kjelleberg, S., & Philipp, B. (2009). SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environmental Microbiology, 11, 3073–3086.

    CAS  PubMed  Google Scholar 

  45. Najafi, K., Ganbarov, K., Gholizadeh, P., Tanomand, A., Rezaee, M. A., Mahmood, S. S., Asgharzadeh, M., & Kafil, H. S. (2020). Oral cavity infection by Enterococcus faecalis: Virulence factors and pathogenesis. Reviews in Medical Microbiology, 31, 51–60.

    Google Scholar 

  46. Sillanpää, J., Nallapareddy, S. R., Prakash, V. P., Qin, X., Hook, M., Weinstock, G. M., & Murray, B. E. (2008). Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiology (Reading, England), 154, 3199.

    Google Scholar 

  47. Han, Z., Pinkner, J. S., Ford, B., Obermann, R., Nolan, W., Wildman, S. A., Hobbs, D., Ellenberger, T., Cusumano, C. K., & Hultgren, S. J. (2010). Structure-based drug design and optimization of mannoside bacterial FimH antagonists. Journal of Medicinal Chemistry, 53, 4779–4792.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bouckaert, J., Berglund, J., Schembri, M., De Genst, E., Cools, L., Wuhrer, M., Hung, C. S., Pinkner, J., Slättegård, R., & Zavialov, A. (2005). Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Molecular Microbiology, 55, 441–455.

    CAS  PubMed  Google Scholar 

  49. Cusumano, C. K., Pinkner, J. S., Han, Z., Greene, S. E., Ford, B. A., Crowley, J. R., Henderson, J. P., Janetka, J. W., & Hultgren, S. J. (2011). Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Science Translational Medicine, 3, 109ra115.

    PubMed  PubMed Central  Google Scholar 

  50. Chorell, E., Pinkner, J. S., Phan, G., Edvinsson, S., Buelens, F., Remaut, H., Waksman, G., Hultgren, S. J., & Almqvist, F. (2010). Design and synthesis of C-2 substituted thiazolo and dihydrothiazolo ring-fused 2-pyridones: Pilicides with increased antivirulence activity. Journal of Medicinal Chemistry, 53, 5690–5695.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chorell, E., Bengtsson, C., Banchelin, T.S.-L., Das, P., Uvell, H., Sinha, A. K., Pinkner, J. S., Hultgren, S. J., & Almqvist, F. (2011). Synthesis and application of a bromomethyl substituted scaffold to be used for efficient optimization of anti-virulence activity. European Journal of Medicinal Chemistry, 46, 1103–1116.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yazici, A., Ortucu, S., Taskin, M., & Marinelli, L. (2018). Natural-based antibiofilm and antimicrobial peptides from micro-organisms. Current Topics in Medicinal Chemistry, 18, 2102–2107.

    PubMed  Google Scholar 

  53. Ageitos, J., Sánchez-Pérez, A., Calo-Mata, P., & Villa, T. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138.

    CAS  PubMed  Google Scholar 

  54. Zhang, L., & Falla, T. J. (2006). Antimicrobial peptides: Therapeutic potential. Expert Opinion on Pharmacotherapy, 7, 653–663.

    CAS  PubMed  Google Scholar 

  55. Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55, 27–55.

    CAS  PubMed  Google Scholar 

  56. Jenssen, H., Hamill, P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19, 491–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3, 238–250.

    CAS  PubMed  Google Scholar 

  58. Cassone, M., Frith, N., Vogiatzi, P., Wade, J. D., & Otvos, L. (2009). Induced resistance to the designer proline-rich antimicrobial peptide A3-APO does not involve changes in the intracellular target DnaK. International Journal of Peptide Research and Therapeutics, 15, 121–128.

    CAS  Google Scholar 

  59. Shah, P., Hsiao, F. S. H., Ho, Y. H., & Chen, C. S. (2016). The proteome targets of intracellular targeting antimicrobial peptides. Proteomics, 16, 1225–1237.

    CAS  PubMed  Google Scholar 

  60. Graf, M., & Wilson, D. N. (2019). Intracellular antimicrobial peptides targeting the protein synthesis machinery. In Antimicrobial peptides. (pp. 73–89). Springer.

    Google Scholar 

  61. Okuda, K.-I., Zendo, T., Sugimoto, S., Iwase, T., Tajima, A., Yamada, S., Sonomoto, K., & Mizunoe, Y. (2013). Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrobial Agents and Chemotherapy, 57, 5572–5579.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Overhage, J., Campisano, A., Bains, M., Torfs, E. C., Rehm, B. H., & Hancock, R. E. (2008). Human host defense peptide LL-37 prevents bacterial biofilm formation. Infection and Immunity, 76, 4176–4182.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Brancatisano, F. L., Maisetta, G., Di Luca, M., Esin, S., Bottai, D., Bizzarri, R., Campa, M., & Batoni, G. (2014). Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling, 30, 435–446.

    CAS  PubMed  Google Scholar 

  64. Blower, R. J., Barksdale, S. M., & van Hoek, M. L. (2015). Snake cathelicidin NA-CATH and smaller helical antimicrobial peptides are effective against Burkholderia thailandensis. PLoS Neglected Tropical Diseases, 9, e0003862.

    PubMed  PubMed Central  Google Scholar 

  65. Anunthawan, T., De La Fuente-Núñez, C., Hancock, R. E., & Klaynongsruang, S. (2015). Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848, 1352–1358.

    CAS  Google Scholar 

  66. De Brucker, K., Delattin, N., Robijns, S., Steenackers, H., Verstraeten, N., Landuyt, B., Luyten, W., Schoofs, L., Dovgan, B., & Fröhlich, M. (2014). Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation. Antimicrobial Agents and Chemotherapy, 58, 5395–5404.

    PubMed  PubMed Central  Google Scholar 

  67. Mataraci, E., & Dosler, S. (2012). In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrobial Agents and Chemotherapy, 56, 6366–6371.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cao, Y., Yin, H., Wang, W., Pei, P., Wang, Y., Wang, X., Jiang, J., Luo, S.-Z., & Chen, L. (2020). Killing Streptococcus mutans in mature biofilm with a combination of antimicrobial and antibiofilm peptides. Amino Acids, 52, 1–14.

    CAS  PubMed  Google Scholar 

  69. Gopal, R., Lee, J. H., Kim, Y. G., Kim, M.-S., Seo, C. H., & Park, Y. (2013). Anti-microbial, anti-biofilm activities and cell selectivity of the NRC-16 peptide derived from witch flounder, Glyptocephalus cynoglossus. Marine Drugs, 11, 1836–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, L., Jia, L., Zhang, Q., Zhou, X., Liu, Z., Li, B., Zhu, Z., Wang, F., Yu, C., & Zhang, Q. (2017). A novel antimicrobial peptide against dental-caries-associated bacteria. Anaerobe, 47, 165–172.

    CAS  PubMed  Google Scholar 

  71. Cooper, V. S., Carlson, W. A., & LiPuma, J. J. (2009). Susceptibility of Caenorhabditis elegans to Burkholderia infection depends on prior diet and secreted bacterial attractants. PLoS ONE, 4, e7961.

    PubMed  PubMed Central  Google Scholar 

  72. Peng, X., Zhang, Y., Bai, G., Zhou, X., & Wu, H. (2016). Cyclic di-AMP mediates biofilm formation. Molecular Microbiology, 99, 945–959.

    CAS  PubMed  Google Scholar 

  73. Pletzer, D., Coleman, S. R., & Hancock, R. E. (2016). Anti-biofilm peptides as a new weapon in antimicrobial warfare. Current Opinion in Microbiology, 33, 35–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ribeiro, S. M., De La Fuente-Núñez, C., Baquir, B., Faria-Junior, C., Franco, O. L., & Hancock, R. E. (2015). Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics. Antimicrobial Agents and Chemotherapy, 59, 3906–3912.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tong, Z., Zhang, Y., Ling, J., Ma, J., Huang, L., & Zhang, L. (2014). An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS ONE, 9, e89209.

    PubMed  PubMed Central  Google Scholar 

  76. Tong, Z., Zhou, L., Jiang, W., Kuang, R., Li, J., Tao, R., & Ni, L. (2011). An in vitro synergetic evaluation of the use of nisin and sodium fluoride or chlorhexidine against Streptococcus mutans. Peptides, 32, 2021–2026.

    CAS  PubMed  Google Scholar 

  77. Domingo-Calap, P., & Delgado-Martínez, J. (2018). Bacteriophages: Protagonists of a post-antibiotic era. Antibiotics, 7, 66.

    CAS  PubMed Central  Google Scholar 

  78. Principi, N., Silvestri, E., & Esposito, S. (2019). Advantages and limitations of bacteriophages for the treatment of bacterial infections. Frontiers in Pharmacology, 10, 513.

    PubMed  PubMed Central  Google Scholar 

  79. Bedi, M. S., Verma, V., & Chhibber, S. (2009). Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World Journal of Microbiology & Biotechnology, 25, 1145.

    CAS  Google Scholar 

  80. Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences, 104, 11197–11202.

    CAS  Google Scholar 

  81. Łusiak-Szelachowska, M., Weber-Dąbrowska, B., & Górski, A. (2020). Bacteriophages and lysins in biofilm control. Virologica Sinica. https://doi.org/10.1007/s12250-019-00192-3

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wood, S., Kirkham, J., Marsh, P., Shore, R., Nattress, B., & Robinson, C. (2000). Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. Journal of Dental Research, 79, 21–27.

    CAS  PubMed  Google Scholar 

  83. Pires, D. P., Oliveira, H., Melo, L. D., Sillankorva, S., & Azeredo, J. (2016). Bacteriophage-encoded depolymerases: Their diversity and biotechnological applications. Applied Microbiology and Biotechnology, 100, 2141–2151.

    CAS  PubMed  Google Scholar 

  84. Cornelissen, A., Ceyssens, P. J., T’syen, J., Van Praet, H., Noben, J. P., Shaburova, O. V., Krylov, V. N., Volckaert, G., & Lavigne, R. (2011). The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties. PLoS ONE, 6, e18597.

    Google Scholar 

  85. Yoon, S., Choi, Y., Lee, S. Y., Son, J., Jun, S., & Kang, S. (2013) Bacteriophage or lytic protein derived from the bacteriophage which effective for the treatment of Staphylococcus aureus biofilm, Google Patents.

  86. Borysowski, J., Łobocka, M., Międzybrodzki, R., Weber-Dąbrowska, B., & Górski, A. (2011). Potential of bacteriophages and their lysins in the treatment of MRSA. BioDrugs, 25, 347–355.

    CAS  PubMed  Google Scholar 

  87. Fischetti, V. A. (2018). Development of phage lysins as novel therapeutics: A historical perspective. Viruses, 10, 310.

    PubMed Central  Google Scholar 

  88. Sharma, U., Vipra, A., & Channabasappa, S. (2018). Phage-derived lysins as potential agents for eradicating biofilms and persisters. Drug Discovery Today, 23, 848–856.

    CAS  PubMed  Google Scholar 

  89. Gray, J. A., Chandry, P. S., Kaur, M., Kocharunchitt, C., Bowman, J. P., & Fox, E. M. (2018). Novel biocontrol methods for Listeria monocytogenes biofilms in food production facilities. Frontiers in Microbiology, 9, 605.

    PubMed  PubMed Central  Google Scholar 

  90. Briers, Y., Walmagh, M., Grymonprez, B., Biebl, M., Pirnay, J.-P., Defraine, V., Michiels, J., Cenens, W., Aertsen, A., & Miller, S. (2014). Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 58, 3774–3784.

    PubMed  PubMed Central  Google Scholar 

  91. Donlan, R. M. (2009). Preventing biofilms of clinically relevant organisms using bacteriophage. Trends in Microbiology, 17, 66–72.

    CAS  PubMed  Google Scholar 

  92. Coulter, L. B., McLean, R. J., Rohde, R. E., & Aron, G. M. (2014). Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses, 6, 3778–3786.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Issa, R., Chanishvili, N., Caplin, J., Kakabadze, E., Bakuradze, N., Makalatia, K., & Cooper, I. (2019). Antibiofilm potential of purified environmental bacteriophage preparations against early stage Pseudomonas aeruginosa biofilms. Journal of Applied Microbiology, 126, 1657–1667.

    CAS  PubMed  Google Scholar 

  94. Maciejewska, B., Olszak, T., & Drulis-Kawa, Z. (2018). Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: An ambitious and also a realistic application? Applied Microbiology and Biotechnology, 102, 2563–2581.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Abedon, S. T. (2019). Phage-antibiotic combination treatments: Antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics, 8, 182.

    CAS  PubMed Central  Google Scholar 

  96. Tagliaferri, T. L., Jansen, M., & Horz, H.-P. (2019). Fighting pathogenic bacteria on two fronts: Phages and antibiotics as combined strategy. Frontiers in Cellular and Infection Microbiology, 9, 22.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fuqua, C., Parsek, M. R., & Greenberg, E. P. (2001). Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annual Review of Genetics, 35, 439–468.

    CAS  PubMed  Google Scholar 

  98. Dijkshoorn, L., Nemec, A., & Seifert, H. (2007). An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nature Reviews Microbiology, 5, 939–951.

    CAS  PubMed  Google Scholar 

  99. Hemmati, F., Salehi, R., Ghotaslou, R., Kafil, H. S., Hasani, A., Gholizadeh, P., Nouri, R., & Rezaee, M. A. (2020). Quorum Quenching: A potential target for antipseudomonal therapy. Infection and Drug Resistance, 13, 2989–3005.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kalia, V. C. (2013). Quorum sensing inhibitors: An overview. Biotechnology Advances, 31, 224–245.

    CAS  PubMed  Google Scholar 

  101. Dembitsky, V. M., Al Quntar, A. A. A., & Srebnik, M. (2011). Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chemical Reviews, 111, 209–237.

    CAS  PubMed  Google Scholar 

  102. Kaufmann, G. F., Sartorio, R., Lee, S.-H., Mee, J. M., Altobell, L. J., Kujawa, D. P., Jeffries, E., Clapham, B., Meijler, M. M., & Janda, K. D. (2006). Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. Journal of the American Chemical Society, 128, 2802–2803.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bassler, B. L. (2002). Small talk: Cell-to-cell communication in bacteria. Cell, 109, 421–424.

    CAS  PubMed  Google Scholar 

  104. Taylor, P. K., Yeung, A. T., & Hancock, R. E. (2014). Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies. Journal of Biotechnology, 191, 121–130.

    CAS  PubMed  Google Scholar 

  105. de Almeida, F. A., Vargas, E. L. G., Carneiro, D. G., Pinto, U. M., & Vanetti, M. C. D. (2018). Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella. Microbial Pathogenesis, 121, 369–388.

    CAS  PubMed  Google Scholar 

  106. Yang, E., Lu, Y., Xu, Y., Liang, Q., Wang, C., Wang, H., & Shen, H. (2014). Recombinant BCG coexpressing Ag85B, ESAT-6 and Rv3620c elicits specific Th1 immune responses in C57BL/6 mice. Microbial Pathogenesis, 69, 53–59.

    PubMed  Google Scholar 

  107. Soheili, V., Bazzaz, B. S. F., Abdollahpour, N., & Hadizadeh, F. (2015). Investigation of Pseudomonas aeruginosa quorum-sensing signaling system for identifying multiple inhibitors using molecular docking and structural analysis methodology. Microbial Pathogenesis, 89, 73–78.

    CAS  PubMed  Google Scholar 

  108. Skindersoe, M. E., Alhede, M., Phipps, R., Yang, L., Jensen, P. O., Rasmussen, T. B., Bjarnsholt, T., Tolker-Nielsen, T., Høiby, N., & Givskov, M. (2008). Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 52, 3648–3663.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sofer, D., Gilboa-Garber, N., Belz, A., & Garber, N. C. (1999). ‘Subinhibitory’erythromycin represses production of Pseudomonas aeruginosa lectins, autoinducer and virulence factors. Chemotherapy, 45, 335–341.

    CAS  PubMed  Google Scholar 

  110. Dong, Y.-H., & Zhang, L.-H. (2005). Quorum sensing and quorum-quenching enzymes. The Journal of Microbiology, 43, 101–109.

    CAS  PubMed  Google Scholar 

  111. Chanda, S., & Rakholiya, K. (2011). Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. Microbiology Book Series, 1, 520–529.

    Google Scholar 

  112. Zhou, J.-W., Chen, T.-T., Tan, X.-J., Sheng, J.-Y., & Jia, A.-Q. (2018). Can the quorum sensing inhibitor resveratrol function as an aminoglycoside antibiotic accelerant against Pseudomonas aeruginosa? International Journal of Antimicrobial Agents, 52, 35–41.

    CAS  PubMed  Google Scholar 

  113. Roudashti, S., Zeighami, H., Mirshahabi, H., Bahari, S., Soltani, A., & Haghi, F. (2017). Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World Journal of Microbiology & Biotechnology, 33, 50.

    Google Scholar 

  114. Hemmati, F., Salehi, R., Ghotaslou, R., Kafil, H. S., Hasani, A., Gholizadeh, P., & Rezaee, M. A. (2020). The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Biological Macromolecules, 163, 2248–2258.

    CAS  PubMed  Google Scholar 

  115. de Nys, R., Wright, A. D., König, G. M., & Sticher, O. (1993). New halogenated furanones from the marine alga Delisea pulchra (cf. fimbriata). Tetrahedron, 49, 11213–11220.

    Google Scholar 

  116. De Nys, R., Givskov, M., Kumar, N., Kjelleberg, S., & Steinberg, P. (2006). Furanones. In Antifouling compounds. (pp. 55–86). Springer.

    Google Scholar 

  117. Rasmussen, T. B., Skindersoe, M. E., Bjarnsholt, T., Phipps, R. K., Christensen, K. B., Jensen, P. O., Andersen, J. B., Koch, B., Larsen, T. O., & Hentzer, M. (2005). Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology, 151, 1325–1340.

    CAS  PubMed  Google Scholar 

  118. Musthafa, K. S., Ravi, A. V., Annapoorani, A., Packiavathy, I. S. V., & Pandian, S. K. (2010). Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the N-acyl-homoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy, 56, 333–339.

    CAS  PubMed  Google Scholar 

  119. Girennavar, B., Cepeda, M. L., Soni, K. A., Vikram, A., Jesudhasan, P., Jayaprakasha, G., Pillai, S. D., & Patil, B. S. (2008). Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. International Journal of Food Microbiology, 125, 204–208.

    CAS  PubMed  Google Scholar 

  120. Adonizio, A., Kong, K.-F., & Mathee, K. (2008). Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrobial Agents and Chemotherapy, 52, 198–203.

    CAS  PubMed  Google Scholar 

  121. Vandeputte, O. M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., El Jaziri, M., & Baucher, M. (2010). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Applied and Environment Microbiology, 76, 243–253.

    CAS  Google Scholar 

  122. Zhou, L., Zheng, H., Tang, Y., Yu, W., & Gong, Q. (2013). Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnology Letters, 35, 631–637.

    CAS  PubMed  Google Scholar 

  123. Packiavathy, I. A. S. V., Priya, S., Pandian, S. K., & Ravi, A. V. (2014). Inhibition of biofilm development of uropathogens by curcumin—An anti-quorum sensing agent from Curcuma longa. Food Chemistry, 148, 453–460.

    CAS  PubMed  Google Scholar 

  124. Burt, S. A., Ojo-Fakunle, V. T., Woertman, J., & Veldhuizen, E. J. (2014). The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS ONE, 9, e93414.

    PubMed  PubMed Central  Google Scholar 

  125. Pe**, B., Ciric, A., Glamoclija, J., Nikolic, M., & Sokovic, M. (2015). In vitro anti-quorum sensing activity of phytol. Natural Product Research, 29, 374–377.

    CAS  PubMed  Google Scholar 

  126. Husain, F. M., Ahmad, I., Khan, M. S., Ahmad, E., Tahseen, Q., Khan, M. S., & Alshabib, N. A. (2015). Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Frontiers in Microbiology, 6, 420.

    PubMed  PubMed Central  Google Scholar 

  127. Kumar, L., Chhibber, S., Kumar, R., Kumar, M., & Harjai, K. (2015). Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia, 102, 84–95.

    CAS  PubMed  Google Scholar 

  128. Luo, J., Dong, B., Wang, K., Cai, S., Liu, T., Cheng, X., Lei, D., Chen, Y., Li, Y., & Kong, J. (2017). Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS ONE, 12, e0176883.

    PubMed  PubMed Central  Google Scholar 

  129. Li, Y., Huang, J., Li, L., & Liu, L. (2017). Synergistic activity of berberine with azithromycin against Pseudomonas aeruginosa isolated from patients with cystic fibrosis of lung in vitro and in vivo. Cellular Physiology and Biochemistry, 42, 1657–1669.

    CAS  PubMed  Google Scholar 

  130. Vasavi, H. S., Arun, A. B., & Rekha, P. D. (2014). Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiology and Immunology, 58, 286–293.

    CAS  PubMed  Google Scholar 

  131. Jakobsen, T. H., Warming, A. N., Vejborg, R. M., Moscoso, J. A., Stegger, M., Lorenzen, F., Rybtke, M., Andersen, J. B., Petersen, R., & Andersen, P. S. (2017). A broad range quorum sensing inhibitor working through sRNA inhibition. Science and Reports, 7, 1–12.

    Google Scholar 

  132. Ilic-Tomić, T., Soković, M., Vojnović, S., Ćirić, A. D., Veljić, M., Nikodinović-Runić, J., & Novaković, M. M. (2017). Diarylheptanoids from Alnus viridis ssp viridis and Alnus glutinosa: Modulation of quorum sensing activity in Pseudomonas aeruginosa. Planta Medica, 83, 117–125.

    PubMed  Google Scholar 

  133. Nafee, N., Husari, A., Maurer, C. K., Lu, C., de Rossi, C., Steinbach, A., Hartmann, R. W., Lehr, C.-M., & Schneider, M. (2014). Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. Journal of Controlled Release, 192, 131–140.

    CAS  PubMed  Google Scholar 

  134. Geske, G. D., Wezeman, R. J., Siegel, A. P., & Blackwell, H. E. (2005). Small molecule inhibitors of bacterial quorum sensing and biofilm formation. Journal of the American Chemical Society, 127, 12762–12763.

    CAS  PubMed  Google Scholar 

  135. Hentzer, M., Riedel, K., Rasmussen, T. B., Heydorn, A., Andersen, J. B., Parsek, M. R., Rice, S. A., Eberl, L., Molin, S., & Høiby, N. (2002). Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology, 148, 87–102.

    CAS  PubMed  Google Scholar 

  136. Lönn-Stensrud, J., Petersen, F., Benneche, T., & Scheie, A. A. (2007). Synthetic bromated furanone inhibits autoinducer-2-mediated communication and biofilm formation in oral streptococci. Oral Microbiology and Immunology, 22, 340–346.

    PubMed  Google Scholar 

  137. O’Loughlin, C. T., Miller, L. C., Siryaporn, A., Drescher, K., Semmelhack, M. F., & Bassler, B. L. (2013). A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proceedings of the National Academy of Sciences, 110, 17981–17986.

    Google Scholar 

  138. Ishii, S., Fukui, K., Yokoshima, S., Kumagai, K., Beniyama, Y., Kodama, T., Fukuyama, T., Okabe, T., Nagano, T., & Kojima, H. (2017). High-throughput screening of small molecule inhibitors of the Streptococcus quorum-sensing signal pathway. Science and Reports, 7, 1–10.

    Google Scholar 

  139. Heidari, A., Noshiranzadeh, N., Haghi, F., & Bikas, R. (2017). Inhibition of quorum sensing related virulence factors of Pseudomonas aeruginosa by pyridoxal lactohydrazone. Microbial Pathogenesis, 112, 103–110.

    CAS  PubMed  Google Scholar 

  140. Heidari, A., Haghi, F., Noshiranzadeh, N., & Bikas, R. (2017). (S, E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene) propane hydrazide as a quorum sensing inhibitor of Pseudomonas aeruginosa. Medicinal Chemistry Research, 26, 1947–1955.

    CAS  Google Scholar 

  141. Alizadeh, N., Memar, M., Mehramuz, B., Abibiglou, S., Hemmati, F., & Samadi Kafil, H. (2018). Current advances in aptamer-assisted technologies for detecting bacterial and fungal toxins. Journal of Applied Microbiology, 124, 644–651.

    CAS  PubMed  Google Scholar 

  142. Ning, Y., Cheng, L., Ling, M., Feng, X., Chen, L., Wu, M., & Deng, L. (2015). Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathogens and Disease, 73, ftv034.

    PubMed  Google Scholar 

  143. Nimjee, S. M., Rusconi, C. P., & Sullenger, B. A. (2005). Aptamers: An emerging class of therapeutics. Annual Review of Medicine, 56, 555–583.

    CAS  PubMed  Google Scholar 

  144. Shatila, F., Yaşa, İ, & Yalçın, H. T. (2020). Inhibition of Salmonella enteritidis biofilms by Salmonella invasion protein-targeting aptamer. Biotechnology Letters. https://doi.org/10.1007/s10529-020-02920-2

    Article  PubMed  Google Scholar 

  145. Kolovskaya, O. S., Savitskaya, A. G., Zamay, T. N., Reshetneva, I. T., Zamay, G. S., Erkaev, E. N., Wang, X., Wehbe, M., Salmina, A. B., & Perianova, O. V. (2013). Development of bacteriostatic DNA aptamers for salmonella. Journal of Medicinal Chemistry, 56, 1564–1572.

    CAS  PubMed  Google Scholar 

  146. Mao, B., Cheng, L., Wang, S., Zhou, J., & Deng, L. (2018). Combat biofilm by bacteriostatic aptamer-functionalized graphene oxide. Biotechnology and Applied Biochemistry, 65, 355–361.

    CAS  PubMed  Google Scholar 

  147. Lijuan, C., **ng, Y., Minxi, W., Wenkai, L., & Le, D. (2017). Development of an aptamer-ampicillin conjugate for treating biofilms. Biochemical and Biophysical Research Communications, 483, 847–854.

    PubMed  Google Scholar 

  148. Thevendran, R., Sarah, S., Tang, T.-H., & Citartan, M. (2020). Strategies to bioengineer aptamer-driven nanovehicles as exceptional molecular tools for targeted therapeutics: A review. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2020.04.051

    Article  PubMed  Google Scholar 

  149. Yu, Y. M., Xu, B. Y., Yan, S. S., Xu, J. F., Liu, F., Li, G. M., Ding, Y. L., & Wu, S. Q. (2013). Screening and anti-virulent study of N-acyl homoserine lactones DNA aptamers against Pseudomonas aeruginosa quorum sensing. Biotechnology and Bioprocess Engineering, 18, 406–412.

    Google Scholar 

  150. Wang, S., Mao, B., Wu, M., Liang, J., & Deng, L. (2018). Influence of aptamer-targeted antibiofilm agents for treatment of Pseudomonas aeruginosa biofilms. Antonie van Leeuwenhoek, 111, 199–208.

    CAS  PubMed  Google Scholar 

  151. Oroh, S. B., Mustopa, A. Z., Budiarti, S., & Budiarto, B. R. (2020). Inhibition of enteropathogenic Escherichia coli biofilm formation by DNA aptamer. Molecular Biology Reports. https://doi.org/10.1007/s11033-020-05822-8

    Article  PubMed  Google Scholar 

  152. Sengupta, B., Adhikari, P., Mallet, E., Havner, R., & Pradhan, P. (2020). Spectroscopic study on Pseudomonas aeruginosa biofilm in the presence of the Aptamer-DNA scaffolded silver nanoclusters. Molecules, 25, 3631.

    CAS  PubMed Central  Google Scholar 

  153. Whitesides, G. M. (2005). Nanoscience, nanotechnology, and chemistry. Small (Weinheim an der Bergstrasse, Germany), 1, 172–179.

    CAS  Google Scholar 

  154. Chen, M., Yu, Q., & Sun, H. (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14, 18488–18501.

    PubMed  PubMed Central  Google Scholar 

  155. Mahamuni-Badiger, P. P., Patil, P. M., Badiger, M. V., Patel, P. R., Thorat-Gadgil, B. S., Pandit, A., & Bohara, R. A. (2019). Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Materials Science and Engineering: C, 108, 110319.

    Google Scholar 

  156. Shi, S.-F., Jia, J.-F., Guo, X.-K., Zhao, Y.-P., Chen, D.-S., Guo, Y.-Y., & Zhang, X.-L. (2016). Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. International JOURNAL of Nanomedicine, 11, 6499.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Gupta, D., Singh, A., & Khan, A. U. (2017). Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Research Letters, 12, 1–6.

    Google Scholar 

  158. Padwal, P., Bandyopadhyaya, R., & Mehra, S. (2014). Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir, 30, 15266–15276.

    CAS  PubMed  Google Scholar 

  159. Banoee, M., Seif, S., Nazari, Z. E., Jafari-Fesharaki, P., Shahverdi, H. R., Moballegh, A., Moghaddam, K. M., & Shahverdi, A. R. (2010). ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93, 557–561.

    Google Scholar 

  160. Nallathamby, P. D., Lee, K. J., Desai, T., & Xu, X.-H.N. (2010). Study of the multidrug membrane transporter of single living Pseudomonas aeruginosa cells using size-dependent plasmonic nanoparticle optical probes. Biochemistry, 49, 5942–5953.

    CAS  PubMed  Google Scholar 

  161. Pérez-Laguna, V., García-Luque, I., Ballesta, S., Pérez-Artiaga, L., Lampaya-Pérez, V., Samper, S., Soria-Lozano, P., Rezusta, A., & Gilaberte, Y. (2018). Antimicrobial photodynamic activity of Rose Bengal, alone or in combination with Gentamicin, against planktonic and biofilm Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 21, 211–216.

    PubMed  Google Scholar 

  162. Khan, F., Lee, J.-W., Manivasagan, P., Pham, D. T. N., Oh, J., & Kim, Y.-M. (2019). Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microbial Pathogenesis, 135, 103623.

    CAS  PubMed  Google Scholar 

  163. Wang, Z., Bai, H., Lu, C., Hou, C., Qiu, Y., Zhang, P., Duan, J., & Mu, H. (2019). Light controllable chitosan micelles with ROS generation and essential oil release for the treatment of bacterial biofilm. Carbohydrate Polymers, 205, 533–539.

    CAS  PubMed  Google Scholar 

  164. Kavanaugh, J. S., Flack, C. E., Lister, J., Ricker, E. B., Ibberson, C. B., Jenul, C., Moormeier, D. E., Delmain, E. A., Bayles, K. W., & Horswill, A. R. (2019). Identification of extracellular DNA-binding proteins in the biofilm matrix. MBio, 10, e01137–e1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. **a, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I., & Nel, A. E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2, 2121–2134.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang, L., Jiang, Y., Ding, Y., Povey, M., & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9, 479–489.

    Google Scholar 

  167. Ebrahimzadeh, S., Bari, M. R., Hamishehkar, H., Kafil, H. S., & Lim, L.-T. (2021). Essential oils-loaded electrospun chitosan-poly(vinyl alcohol) nonwovens laminated on chitosan film as bilayer bioactive edible films. LWT, 144, 111217.

    CAS  Google Scholar 

  168. Ma, L., Conover, M., Lu, H., Parsek, M. R., Bayles, K., & Wozniak, D. J. (2009). Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens, 5, e1000354.

    PubMed  PubMed Central  Google Scholar 

  169. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science, 295, 1487–1487.

    CAS  PubMed  Google Scholar 

  170. Kovach, K., Fleming, D., Rumbaugh, K. P., & Gordon, V. (2019). Specific disruption of established P. aeruginosa biofilms using polymer-attacking enzymes. bioRxiv, 598979.

  171. Zhang, L., Jiang, Y., Ding, Y., Daskalakis, N., Jeuken, L., Povey, M., O’Neill, A. J., & York, D. W. (2010). Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research, 12, 1625–1636.

    CAS  Google Scholar 

  172. Messiaen, A.-S., Forier, K., Nelis, H., Braeckmans, K., & Coenye, T. (2013). Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms. PLoS ONE, 8, e79220.

    PubMed  PubMed Central  Google Scholar 

  173. Pham, D. T. N., Khan, F., Phan, T. T. V., Park, S.-K., Manivasagan, P., Oh, J., & Kim, Y.-M. (2019). Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa. Brazilian Journal of Microbiology, 50, 791–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Loo, C. Y., Rohanizadeh, R., Young, P. M., Traini, D., Cavaliere, R., Whitchurch, C. B., & Lee, W. H. (2016). Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. Journal of Agriculture and Food Chemistry, 64, 2513–2522.

    CAS  Google Scholar 

  175. Ghotaslou, R., Bahari, Z., Aliloo, A., Gholizadeh, P., & Eshlaghi, B. S. (2017). The in vitro effects of silver nanoparticles on bacterial biofilms. Journal of Microbiology, Biotechnology and Food Sciences, 6, 1077–1080.

    CAS  Google Scholar 

  176. Mu, H., Tang, J., Liu, Q., Sun, C., Wang, T., & Duan, J. (2016). Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Science and Reports, 6, 1–9.

    CAS  Google Scholar 

  177. Lin, W.-T., Tan, H.-L., Duan, Z.-L., Yue, B., Ma, R., He, G., & Tang, T.-T. (2014). Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. International Journal of Nanomedicine, 9, 1215.

    PubMed  PubMed Central  Google Scholar 

  178. Khan, F., Manivasagan, P., Lee, J.-W., Pham, D. T. N., Oh, J., & Kim, Y.-M. (2019). Fucoidan-stabilized gold nanoparticle-mediated biofilm inhibition, attenuation of virulence and motility properties in Pseudomonas aeruginosa PAO1. Marine Drugs, 17, 208.

    CAS  PubMed Central  Google Scholar 

  179. Ali, S. G., Ansari, M. A., Khan, H. M., Jalal, M., Mahdi, A. A., & Cameotra, S. S. (2017). Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa. Journal of Basic Microbiology, 57, 193–203.

    CAS  PubMed  Google Scholar 

  180. Huang, J., Liu, Y., Yang, L., & Zhou, F. (2019). Synthesis of sulfonated chitosan and its antibiofilm formation activity against E. coli and S. aureus. International Journal of Biological Macromolecules, 129, 980–988.

    CAS  PubMed  Google Scholar 

  181. Khan, S. T., Ahmad, J., Ahamed, M., Musarrat, J., & Al-Khedhairy, A. A. (2016). Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. JBIC Journal of Biological Inorganic Chemistry, 21, 295–303.

    CAS  PubMed  Google Scholar 

  182. Li, X., Wong, C.-H., Ng, T.-W., Zhang, C.-F., Leung, K.C.-F., & **, L. (2016). The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions. International Journal of Nanomedicine, 11, 2471.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wojciechowska, M., Równicki, M., Mieczkowski, A., Miszkiewicz, J., & Trylska, J. (2020). Antibacterial peptide nucleic acids—Facts and perspectives. Molecules, 25, 559.

    CAS  PubMed Central  Google Scholar 

  184. Lee, H. T., Kim, S. K., & Yoon, J. W. (2019). Antisense peptide nucleic acids as a potential anti-infective agent. Journal of Microbiology, 57, 423–430.

    CAS  PubMed  Google Scholar 

  185. Kurupati, P., Tan, K. S. W., Kumarasinghe, G., & Poh, C. L. (2007). Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant β-lactamase-producing Klebsiella pneumoniae strain. Antimicrobial Agents and Chemotherapy, 51, 805–811.

    CAS  PubMed  Google Scholar 

  186. Barkowsky, G., Lemster, A.-L., Pappesch, R., Jacob, A., Krüger, S., Schröder, A., Kreikemeyer, B., & Patenge, N. (2019). Influence of different cell-penetrating peptides on the antimicrobial efficiency of PNAs in Streptococcus pyogenes. Molecular Therapy-Nucleic Acids, 18, 444–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Narenji, H., Gholizadeh, P., Aghazadeh, M., Rezaee, M. A., Asgharzadeh, M., & Kafil, H. S. (2017). Peptide nucleic acids (PNAs): Currently potential bactericidal agents. Biomedicine & Pharmacotherapy, 93, 580–588.

    CAS  Google Scholar 

  188. Readman, J. B., Dickson, G., & Coldham, N. G. (2017). Tetrahedral DNA nanoparticle vector for intracellular delivery of targeted peptide nucleic acid antisense agents to restore antibiotic sensitivity in cefotaxime-resistant Escherichia coli. Nucleic Acid Therapeutics, 27, 176–181.

    CAS  PubMed  Google Scholar 

  189. Otsuka, T., Brauer, A. L., Kirkham, C., Sully, E. K., Pettigrew, M. M., Kong, Y., Geller, B. L., & Murphy, T. F. (2016). Antimicrobial activity of antisense peptide–peptide nucleic acid conjugates against non-typeable Haemophilus influenzae in planktonic and biofilm forms. Journal of Antimicrobial Chemotherapy, 72, 137–144.

    PubMed Central  PubMed  Google Scholar 

  190. Doyle, T. B., Hawkins, A. C., & McCarter, L. L. (2004). The complex flagellar torque generator of Pseudomonas aeruginosa. Journal of Bacteriology, 186, 6341–6350.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. **a, Y., **ong, Y., Li, X., & Su, X. (2011). Inhibition of biofilm formation by the antisense peptide nucleic acids targeted at the motA gene in Pseudomonas aeruginosa PAO1 strain. World Journal of Microbiology & Biotechnology, 27, 1981–1987.

    Google Scholar 

  192. Castillo, J. I., Równicki, M., Wojciechowska, M., & Trylska, J. (2018). Antimicrobial synergy between mRNA targeted peptide nucleic acid and antibiotics in E. coli. Bioorganic & Medicinal Chemistry Letters, 28, 3094–3098.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FH: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Roles/Writing—original draft; Writing—review & editing. MAR, SE, LY, RN & HSK: Data curation; Roles/Writing—original draft; Writing—review & editing. PG: Project administration; Resources; Software; Supervision; Validation; Visualization; Writing—review & editing.

Corresponding author

Correspondence to Pourya Gholizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmati, F., Rezaee, M.A., Ebrahimzadeh, S. et al. Novel Strategies to Combat Bacterial Biofilms. Mol Biotechnol 63, 569–586 (2021). https://doi.org/10.1007/s12033-021-00325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00325-8

Keywords

Navigation