Log in

Combination of IFN-gamma with STING agonist and PD-1 immune checkpoint blockade: a potential immunotherapy for gastric cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Suppression of the cGAS-STING pathway is an immune escape mechanism in cancer cells. The critical role of this pathway in gastric cancer (GC) is not fully understood. Herein, we evaluated the effect of the interferon-gamma (IFN-gamma), STING agonist, PD-1 immune checkpoint blockade, and their combination on the cGAS-STING pathway in GC. Expression of cGAS and STING in tumor tissue samples and adjacent normal tissue (ANT) biopsies of fifty new GC patients was evaluated by quantitative real-time PCR (qRT-PCR). Moreover, cGAS and STING expression levels were examined in Peripheral Blood Mononuclear Cells (PBMC) samples of forty GC patients and twenty-five healthy subjects. The apoptosis rate of cancer cells was analyzed by Annexin V-FITC/PI. Cell proliferation was measured by the BrdU assay. Also, IFN-β levels were evaluated in the supernatants of the treated groups. The cGAS expression was decreased in patients with distant metastasis. Co-cultures treated with IFN-gamma showed an elevated level of cGAS and STING expressions in PBMC and cancer cells. The rate of apoptosis increased in all the treatment groups. In addition, the rate of proliferation in PBMCs increased in different treated groups. The main role of PBMCs in cytotoxicity was determined by a comparative analysis of the viability of cells treated with all treatments, both with and without PBMCs. The production of IFN-β was elevated in all treated groups. The current study suggests that a combination therapy using IFN-gamma, STING agonist, and anti-PD-1 antibody can provide a promising approach to the treatment of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available upon request of the authors. The authors declare that the material is original, has not been published before, nor is under consideration in any other journal.

References

  1. Katoh H, Ishikawa S. Lifestyles, genetics, and future perspectives on gastric cancer in east Asian populations. J Hum Genet. 2021;66(9):887–99.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang FH, Zhang XT, Li YF, Tang L, Qu XJ, Ying JE, et al. The Chinese society of clinical oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer, 2021. Cancer Commun. 2021;41(8):747–95.

    Article  Google Scholar 

  3. Kalan Farmanfarma K, Mahdavifar N, Hassanipour S, Salehiniya H. Epidemiologic study of gastric cancer in Iran: a systematic review. Clin Exp Gastroenterol. 2020;13:511–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. Cancer J Clin. 2021;71(3):264–79.

    Article  Google Scholar 

  5. Zhang X-y, Zhang P-y. Gastric cancer: somatic genetics as a guide to therapy. J Med Genet. 2017;54(5):305–12.

    Article  CAS  PubMed  Google Scholar 

  6. Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 2020;21(11):4012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brenkman HJ, Haverkamp L, Ruurda JP, van Hillegersberg R. Worldwide practice in gastric cancer surgery. World J Gastroenterol. 2016;22(15):4041.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013;14(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, et al. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer. 2020;19(1):1–19.

    Article  Google Scholar 

  10. Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21(9):548–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang C, Shang G, Gui X, Zhang X, Bai X-c, Chen ZJ. Structural basis of STING binding with and phosphorylation by TBK1. Nature. 2019;567(7748):394–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347(6227):aaa2630.

    Article  PubMed  Google Scholar 

  13. Gammelgaard KR, Sandfeld-Paulsen B, Godsk SH, Demuth C, Meldgaard P, Sorensen BS, et al. cGAS-STING pathway expression as a prognostic tool in NSCLC. Translational Lung Cancer Research. 2021;10(1):340.

    Article  CAS  Google Scholar 

  14. Yang C-A, Huang H-Y, Chang Y-S, Lin C-L, Lai I-L, Chang J-G. DNA-sensing and nuclease gene expressions as markers for colorectal cancer progression. Oncology. 2017;92(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  15. Song S, Peng P, Tang Z, Zhao J, Wu W, Li H, et al. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci Rep. 2017;7(1):1–13.

    Google Scholar 

  16. Bu Y, Liu F, Jia Q-A, Yu S-N. Decreased expression of TMEM173 predicts poor prognosis in patients with hepatocellular carcinoma. PLoS ONE. 2016;11(11): e0165681.

    Article  PubMed  PubMed Central  Google Scholar 

  17. **a T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral OncolysisSTING deregulation in human melanoma. Can Res. 2016;76(22):6747–59.

    Article  CAS  Google Scholar 

  18. Fang C, Weng T, Hu S, Yuan Z, **ong H, Huang B, et al. IFN-γ-induced ER stress impairs autophagy and triggers apoptosis in lung cancer cells. Oncoimmunology. 2021;10(1):1962591.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018;7(9):4509–16.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kochupurakkal BS, Wang ZC, Hua T, Culhane AC, Rodig SJ, Rajkovic-Molek K, et al. RelA-induced interferon response negatively regulates proliferation. PLoS ONE. 2015;10(10): e0140243.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Wang Y, Song Z, Chu J, Qu X. Deficiency of interferon-gamma or its receptor promotes colorectal cancer development. J Interferon Cytokine Res. 2015;35(4):273–80.

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Huang X, Tong H, Wang Y, Zhang T, Wang W, et al. Comparison of the regulation of β-catenin signaling by type I, type II and type III interferons in hepatocellular carcinoma cells. PLos ONE. 2012. https://doi.org/10.1371/journal.pone.0047040.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sharma P, Pachynski RK, Narayan V, Fléchon A, Gravis G, Galsky MD, et al. Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the CheckMate 650 trial. Cancer Cell. 2020;38(4):489-99.e3.

    Article  CAS  PubMed  Google Scholar 

  24. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J Clin Investig. 2017;127(8):2930–40.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ghaffari A, Peterson N, Khalaj K, Vitkin N, Robinson A, Francis J-A, et al. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br J Cancer. 2018;119(4):440–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim YJ. STINGing the tumor’s immune evasion mechanism. OncoImmunology. 2018;7(4): e1083673.

    Article  PubMed  PubMed Central  Google Scholar 

  27. **a T, Konno H, Ahn J, Barber GN. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 2016;14(2):282–97.

    Article  CAS  PubMed  Google Scholar 

  28. Lee JH, Chang KK, Yoon C, Tang LH, Strong VE, Yoon SS. Lauren histologic type is the most important factor associated with pattern of recurrence following resection of gastric adenocarcinoma. Ann Surg. 2018;267(1):105–13.

    Article  PubMed  Google Scholar 

  29. Imani M, Mohajeri N, Rastegar M, Zarghami N. Synthesis and characterization of N-rich fluorescent bio-dots as a reporter in the design of dual-labeled FRET probe for TaqMan PCR: a feasibility study. Biotechnol Appl Biochem. 2023;70(2):645–58.

    Article  CAS  PubMed  Google Scholar 

  30. Nakajima C, Uekusa Y, Iwasaki M, Yamaguchi N, Mukai T, Gao P, et al. A role of interferon-γ (IFN-γ) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sitesin IFN-γ-deficient mice. Can Res. 2001;61(8):3399–405.

    CAS  Google Scholar 

  31. Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible ChemokinesPD-1 blockade improves the effectiveness of ACT for cancer. Can Res. 2012;72(20):5209–18.

    Article  CAS  Google Scholar 

  32. Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, et al. CTLA-4 blockade increases IFNγ-producing CD4+ ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci. 2008;105(39):14987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakatani T, Kita Y, Fujimoto M, Sano T, Hamada A, Nakamura K, et al. IFN-gamma expression in the tumor microenvironment and CD8-positive tumor-infiltrating lymphocytes as prognostic markers in urothelial cancer patients receiving pembrolizumab. Cancers. 2022;14(2):263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547(7664):413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461(7265):788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishikawa Y, Matsuzaki Y, Kimura K, Rokunohe A, Nakano H, Sawamura D. Modulation of stimulator of interferon genes (STING) expression by interferon-γ in human keratinocytes. Biochem Genet. 2018;56:93–102.

    Article  CAS  PubMed  Google Scholar 

  38. **ong H, ** Y, Yuan Z, Wang B, Hu S, Fang C, et al. IFN-γ activates the tumor cell-intrinsic STING pathway through the induction of DNA damage and cytosolic dsDNA formation. OncoImmunology. 2022;11(1):2044103.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Su Q, Wang F, Dong Z, Chen M, Cao R. IFN-γ induces apoptosis in human melanocytes by activating the JAK1/STAT1 signaling pathway. Mol Med Rep. 2020;22(4):3111–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Esteves AM, Papaevangelou E, Dasgupta P, Galustian C. Combination of Interleukin-15 with a STING agonist, ADU-S100 analog: a potential immunotherapy for prostate cancer. Front Oncol. 2021;11: 621550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786–91.

    Article  CAS  PubMed  Google Scholar 

  42. Ou L, Zhang A, Cheng Y, Chen Y. The cGAS-STING pathway: a promising immunotherapy target. Front Immunol. 2021;12: 795048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou L, Zhang Y, Wang Y, Zhang M, Sun W, Dai T, et al. A dual role of type I interferons in antitumor immunity. Adv Biosyst. 2020;4(11):1900237.

    Article  CAS  Google Scholar 

  44. Da Y, Liu Y, Hu Y, Liu W, Ma J, Lu N, et al. STING agonist cGAMP enhances anti-tumor activity of CAR-NK cells against pancreatic cancer. Oncoimmunology. 2022;11(1):2054105.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vitale G, van Eijck CH, van Koetsveld Ing PM, Erdmann JI, Speel EJM, van der Wansem IK, et al. Type I interferons in the treatment of pancreatic cancer: mechanisms of action and role of related receptors. Ann Surg. 2007;246(2):259.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Booy S, van Eijck CH, Dogan F, van Koetsveld PM, Hofland LJ. Influence of type-I interferon receptor expression level on the response to type-I interferons in human pancreatic cancer cells. J Cell Mol Med. 2014;18(3):492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhatelia K, Singh A, Tomar D, Singh K, Sripada L, Chagtoo M, et al. Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death. Biochimica et Biophysica Acta. 2014;1842(2):144–53.

    Article  CAS  PubMed  Google Scholar 

  48. Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J Immunol. 2014;193(12):6124–34.

    Article  CAS  PubMed  Google Scholar 

  49. Murthy AM, Robinson N, Kumar S. Crosstalk between cGAS–STING signaling and cell death. Cell Death Differ. 2020;27(11):2989–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pernot S, Terme M, Radosevic-Robin N, Castan F, Badoual C, Marcheteau E, et al. Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance. Gastric Cancer. 2020;23:73–81.

    Article  CAS  PubMed  Google Scholar 

  51. Saito H, Kuroda H, Matsunaga T, Osaki T, Ikeguchi M. Increased PD-1 expression on CD4+ and CD8+ T cells is involved in immune evasion in gastric cancer. J Surg Oncol. 2013;107(5):517–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran.

Funding

The authors would like to appreciate Digestive Disease Research Center, Ardabil University of Medical Sciences, for financially supporting this project (1003253).

Author information

Authors and Affiliations

Authors

Contributions

SH: conceptualization, investigation, methodology, project administration, writing original draft; MI: methodology and writing original draft; FP: resources, funding acquisition; NJ: writing original draft; SAK: supervision, methodology, visualization, funding acquisition; ES: supervision, visualization, methodology, data curation.

Corresponding authors

Correspondence to Saeid AbedianKenari or Elham Safarzadeh.

Ethics declarations

Conflict of interests

Shahnaz Hosseinzadeh, Mahsa Imani, Farhad Pourfarzi, Narjes Jafari, Saeid AbedianKenari, and Elham Safarzadeh declare that they have no conflict of interest that might be relevant to the contents of this manuscript.

Ethical approval

The study entitled Combination of IFN-gamma with STING agonist and PD-1 immune checkpoint blockade: A Potential Immunotherapy for Gastric Cancer was approved by the Research Ethics Committee of Mazandaran University of Medical Sciences (IR.MAZUMS.REC.1398.1295), Sari, Iran, in accordance with the guidelines.

Consent to participate

Informed consent was obtained in accordance with the principles of the revised Declaration of Helsinki and approved by the Research Ethics Committee of Mazandaran University of Medical Sciences (IR.MAZUMS.REC.1398.1295) in Sari, Iran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, S., Imani, M., Pourfarzi, F. et al. Combination of IFN-gamma with STING agonist and PD-1 immune checkpoint blockade: a potential immunotherapy for gastric cancer. Med Oncol 41, 110 (2024). https://doi.org/10.1007/s12032-024-02326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02326-4

Keywords

Navigation