Log in

Tissue proteome analysis revealed an association between cancer, immune system response, and the idiopathic granulomatous mastitis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Idiopathic Granulomatous Mastitis (IGM) is a disease that clinically mimics breast cancers with symptoms of pain, edema, erythema, nipple discharge, nipple retraction, and fistula. Although IGM is considered to be formed by autoimmune responses or infections, the molecular mechanism behind formation and progress is unknown. Therefore, in this study, we aimed to investigate molecular mechanisms underlying IGM formation, progress, and recurrence by monitoring the changes at the proteome level. Protein extracts prepared from IGM (n = 15) and within-control tissues (n = 15) were subjected to nHPLC followed by LC–MS/MS proteomic analysis. Label-free quantitation analysis revealed that sixty differentially regulated between the two groups. Those proteins were classified based on their role in metabolic pathways using bioinformatics tools. Based on DAVID analysis, 16 of the differently regulated proteins were associated with the immune system, while 17 proteins were involved in cancer metabolism. STRING analysis showed that five of the differentially regulated proteins were associated with combined immune deficiency which were PNP, TAP1, ITGAL, PRKDC, and PTPRC while the other proteins were involved in insulin response and neutrophil degranulation. This study is one of the very few studies that investigated the changes in protein expressions of IGM tissues compared to controls. For the first time, we have shown the relationship of IGM with the immune system at the protein level and also underlined the cancer-like behavior of the disease. Furthermore, the proteins that were pointed out as combined immune deficiency-related proteins may have value as diagnostic markers for idiopathic granulomatous mastitis although further studies are needed to shed more light on the pathogenesis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Altintoprak F, Kivilcim T, Ozkan OV. Aetiology of idiopathic granulomatous mastitis. World J Clin Cases. 2014;2(12):852. https://doi.org/10.12998/wjcc.v2.i12.852.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kessler E, Wolloch Y. Granulomatous mastitis: a lesion clinically simulating carcinoma. Am J Clin Pathol. 1972;58:642–6. https://doi.org/10.1093/ajcp/58.6.642.

    Article  PubMed  CAS  Google Scholar 

  3. Martinez-Ramos D, Simon-Monterde L, Suelves-Piqueres C, Queralt-Martin R, Granel-Villach L, Laguna-Sastre JM, Nicolau MJ, Escrig-Sos J. Idiopathic granulomatous mastitis: a systematic review of 3060 patients. Breast J. 2019;25:1245–50. https://doi.org/10.1111/tbj.13446.

    Article  PubMed  Google Scholar 

  4. Wolfrum A, Kümmel S, Theuerkauf I, Pelz E, Reinisch M. Granulomatous mastitis: a therapeutic and diagnostic challenge. Breast Care. 2018;13:413–8. https://doi.org/10.1159/000495146.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Altintoprak F, Karakece E, Kivilcim T, Dikicier E, Cakmak G, Celebi F, Ciftci IH. Idiopathic granulomatous mastitis: an autoimmune disease? Sci World J. 2013. https://doi.org/10.1155/2013/148727.

    Article  Google Scholar 

  6. Fujii M, Mizutani Y, Sakuma T, Tagami K, Okamoto K, Kuno Y, Harada M, Kubouchi K, Tsutsumi Y. Corynebacterium kroppenstedtii in granulomatous mastitis: analysis of formalin-fixed, paraffin-embedded biopsy specimens by immunostaining using low-specificity bacterial antisera and real-time polymerase chain reaction. Pathol Int. 2018;68:409–18. https://doi.org/10.1111/pin.12683.

    Article  PubMed  CAS  Google Scholar 

  7. Farouk O, Abdelkhalek M, Abdallah A, Shata A, Senbel A, Attia E, Elghaffar MA, Mesbah M, Soliman N, Amin M, El-Tantawy D. Rifampicin for idiopathic granulomatous lobular mastitis: a promising alternative for treatment. World J Surg. 2017;41:1313–21. https://doi.org/10.1007/s00268-016-3857-7.

    Article  PubMed  Google Scholar 

  8. Al-Khaffaf B, Knox F, Bundred NJ. Idiopathic granulomatous mastitis: a 25-year experience. J Am Coll Surg. 2008;206:269–73. https://doi.org/10.1016/j.jamcollsurg.2007.07.041.

    Article  PubMed  Google Scholar 

  9. Taylor GB, Paviour SD, Musaad S, Jones WO, Holland DJ. A clinicopathological review of 34 cases of inflammatory breast disease showing an association between Corynebacteria infection and granulomatous mastitis. Pathology. 2003;35:109–19. https://doi.org/10.1080/0031302031000082197.

    Article  PubMed  Google Scholar 

  10. Dobinson HC, Anderson TP, Chambers ST, Doogue MP, Seaward L, Werno AM. Antimicrobial treatment options for granulomatous mastitis caused by Corynebacterium species. J Clin Microbiol. 2015;53:2895–9. https://doi.org/10.1128/jcm.00760-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Oddó D, Domínguez F, Gómez N, Méndez GP, Navarro ME. Granulomatous lobular mastitis associated with ductal carcinoma in situ of the breast. Sage Open Med Case Rep. 2019;7:2050313x19836583. https://doi.org/10.1177/2050313x19836583.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tauch A, Fernández-Natal I, Soriano F. A microbiological and clinical review on Corynebacterium kroppenstedtii. Int J Infect Dis. 2016;48:33–9. https://doi.org/10.1016/j.ijid.2016.04.023.

    Article  PubMed  CAS  Google Scholar 

  13. Wang J, Xu H, Li Z, Li F, Yang Y, Yu X, Jiang D, **ng L, Sun H, Shao M. Pathogens in patients with granulomatous lobular mastitis. Int J Infect Dis. 2019;81:123–7. https://doi.org/10.1016/j.ijid.2019.01.034.

    Article  PubMed  Google Scholar 

  14. Wang S, Lin J, Li C, Lee Y-H. A successful case of etanercept used for idiopathic granulomatous mastitis. Breast J. 2019;25:343–5. https://doi.org/10.1111/tbj.13219.

    Article  PubMed  Google Scholar 

  15. Koksal H. Human leukocyte antigens class I and II in patients with idiopathic granulomatous mastitis. Am J Surg. 2019;218:605–8. https://doi.org/10.1016/j.amjsurg.2019.01.038.

    Article  PubMed  Google Scholar 

  16. Yigitbasi MR, Guntas G, Atak T, Sonmez C, Yalman H, Uzun H. The role of interleukin-33 as an inflammatory marker in differential diagnosis of idiopathic granulomatous mastitis and breast cancer. J Invest Surg. 2016;30:1–5. https://doi.org/10.1080/08941939.2016.1240270.

    Article  Google Scholar 

  17. Mazlan L, Suhaimi SNA, Jasmin SJ, Latar NHM, Adzman S, Muhammad R. Breast carcinoma occurring from chronic granulomatous mastitis. Malays J Med Sci Mjms. 2011;19:82–5.

    Google Scholar 

  18. Islam RA, Hossain S, Chowdhury EH. Potential therapeutic targets in energy metabolism pathways of breast cancer. Curr Cancer Drug Target. 2017;17:707–21. https://doi.org/10.2174/1568009617666170330150458.

    Article  CAS  Google Scholar 

  19. Lei Q-R, Yang X, Miao C-M, Wang J-C, Yang Y. Relationship between granulomatous lobular mastitis and methylene tetrahydrofolate reductase gene polymorphism. World J Clin Cases. 2020;8:4017–21. https://doi.org/10.12998/wjcc.v8.i18.4017.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Simsek HU, Albayrak MGB, Kasap M, Simsek T, Akpinar G, Guler SA, Canturk NZ. Elucidation of the changes occurring at the proteome level in ovaries of high-fat diet-induced obese rats. Cell Biochem Funct. 2022;40:278–97. https://doi.org/10.1002/cbf.3693.

    Article  PubMed  CAS  Google Scholar 

  21. Ocal K, Dag A, Turkmenoglu O, Kara T, Seyit H, Konca K. Granulomatous mastitis: clinical, pathological features, and management. Breast J. 2010;16:176–82. https://doi.org/10.1111/j.1524-4741.2009.00879.x.

    Article  PubMed  Google Scholar 

  22. Tang ELS, Ho CSB, Chan PMY, Chen JJC, Goh MH, Tan EY. The therapeutic dilemma of idiopathic granulomatous mastitis. Ann Acad Med Singap. 2021;50:598–605. https://doi.org/10.47102/annals-acadmedsg.2020645.

    Article  PubMed  Google Scholar 

  23. Goulabchand R, Hafidi A, de Perre PV, Millet I, Maria ATJ, Morel J, Quellec AL, Perrochia H, Guilpain P. Mastitis in autoimmune diseases: review of the literature diagnostic pathway, and pathophysiological key players. J Clin Med. 2020;9:958. https://doi.org/10.3390/jcm9040958.

    Article  PubMed Central  CAS  Google Scholar 

  24. Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics. 2008;9:321–32. https://doi.org/10.1093/biostatistics/kxm030.

    Article  PubMed  Google Scholar 

  25. Feng C, Wang H, Lu N, Chen T, He H, Lu Y, Tu XM. Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry. 2014;26:105–9. https://doi.org/10.3969/j.issn.1002-0829.2014.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mutch DM, Berger A, Mansourian R, Rytz A, Roberts M-A. The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinform. 2002;3:17–17. https://doi.org/10.1186/1471-2105-3-17.

    Article  Google Scholar 

  27. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018;47:D607–13. https://doi.org/10.1093/nar/gky1131.

    Article  PubMed Central  CAS  Google Scholar 

  28. Kamal RM, Hamed ST, Salem DS. Classification of inflammatory breast disorders and step by step diagnosis. Breast J. 2009;15:367–80. https://doi.org/10.1111/j.1524-4741.2009.00740.x.

    Article  PubMed  Google Scholar 

  29. Limninart N, Harvey JA, Schultz KJ, Mills AM, Noland MMB, Schroen AT, Rochman CM. What do you mean it’s not cancer? A review of autoimmune and systemic inflammatory diseases involving the breast. J Breast Imaging. 2021;3:612–25. https://doi.org/10.1093/jbi/wbab029.

    Article  Google Scholar 

  30. Steuer AB, Stern MJ, Cobos G, Castilla C, Joseph K-A, Pomeranz MK, Femia AN. Clinical characteristics and medical management of idiopathic granulomatous mastitis. Jama Dermatol. 2020;156:460–4. https://doi.org/10.1001/jamadermatol.2019.4516.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Torun B, Bilgin A, Orhan D, Gocmen R, Kılıc SS, Kuskonmaz B, Cetinkaya D, Tezcan I, Cagdas D. Combined immunodeficiency due to purine nucleoside phosphorylase deficiency: outcome of three patients. Eur J Med Genet. 2022;65: 104428. https://doi.org/10.1016/j.ejmg.2022.104428.

    Article  PubMed  CAS  Google Scholar 

  32. Bantia S, Miller PJ, Parker CD, Ananth SL, Horn LL, Kilpatrick JM, Morris PE, Hutchison TL, Montgomery JA, Sandhu JS. Purine nucleoside phosphorylase inhibitor BCX-1777 (immucillin-H)—a novel potent and orally active immunosuppressive agent. Int Immunopharmacol. 2001;1:1199–210. https://doi.org/10.1016/s1567-5769(01)00056-x.

    Article  PubMed  CAS  Google Scholar 

  33. Balakrishnan K, Nimmanapalli R, Ravandi F, Keating MJ, Gandhi V. Forodesine, an inhibitor of purine nucleoside phosphorylase, induces apoptosis in chronic lymphocytic leukemia cells. Blood. 2006;108:2392–8. https://doi.org/10.1182/blood-2006-03-007468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sunder SR, Hanumanth SR, Gaddam S, Jonnalagada S, Valluri VL. Association of TAP 1 and 2 gene polymorphisms with human immunodeficiency virus–tuberculosis co-infection. Hum Immunol. 2011;72:908–11. https://doi.org/10.1016/j.humimm.2011.07.304.

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y, Shu Y, **ao Y, Wang Q, Kanekura T, Li Y, Wang J, Zhao M, Lu Q, **ao R. Hypomethylation and overexpression of ITGAL (CD11a) in CD4+ T cells in systemic sclerosis. Clin Epigenet. 2014;6:25. https://doi.org/10.1186/1868-7083-6-25.

    Article  CAS  Google Scholar 

  36. Twigger A-J, Küffer GK, Geddes DT, Filgueria L. Expression of granulisyn, perforin and granzymes in human milk over lactation and in the case of maternal infection. Nutrients. 2018;10:1230. https://doi.org/10.3390/nu10091230.

    Article  PubMed Central  CAS  Google Scholar 

  37. Abendaño N, Esparza-Baquer A, Bernales I, Reina R, de Andrés D, Jugo BM. Gene expression profiling reveals new pathways and genes associated with Visna/Maedi viral disease. Animals. 2021;11:1785. https://doi.org/10.3390/ani11061785.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mathieu A-L, Verronese E, Rice GI, Fouyssac F, Bertrand Y, Picard C, Chansel M, Walter JE, Notarangelo LD, Butte MJ, Nadeau KC, Csomos K, Chen DJ, Chen K, Delgado A, Rigal C, Bardin C, Schuetz C, Moshous D, Reumaux H, Plenat F, Phan A, Zabot M-T, Balme B, Viel S, Bienvenu J, Cochat P, van der Burg M, Caux C, Kemp EH, Rouvet I, Malcus C, Méritet J-F, Lim A, Crow YJ, Fabien N, Ménétrier-Caux C, Villartay J-PD, Walzer T, Belot A. PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator–dependent autoimmunity. J Allergy Clin Immunol. 2015;135:1578-88.e5. https://doi.org/10.1016/j.jaci.2015.01.040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhu Q, Wang L, Wang P. The identification of gene expression profiles associated with granulomatous mastitis. Breast Care. 2021;16:319–27. https://doi.org/10.1159/000507474.

    Article  PubMed  Google Scholar 

  40. Zhang Y, Yang W, Wen G, Tang H, Wu C, Wu Y, **g Z, Tang M, Liu G, Li D, Li Y, Deng Y. High expression of PRKDC promotes breast cancer cell growth via p38 MAPK signaling and is associated with poor survival. Mol Genetics Genom Med. 2019;7: e908. https://doi.org/10.1002/mgg3.908.

    Article  CAS  Google Scholar 

  41. Richardson B, Yung R. Role of DNA methylation in the regulation of cell function. J Lab Clin Med. 1999;134:333–40. https://doi.org/10.1016/s0022-2143(99)90147-6.

    Article  PubMed  CAS  Google Scholar 

  42. Xu K, Wang R, **e H, Hu L, Wang C, Xu J, Zhu C, Liu Y, Gao F, Li X, Wang C, Huang J, Zhou W, Zhou G, Shu Y, Guan X. Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis. 2021;10:66. https://doi.org/10.1038/s41389-021-00355-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kim J-Y, Jung HH, Sohn I, Woo SY, Cho H, Cho EY, Lee JE, Kim SW, Nam SJ, Park YH, Ahn JS, Im Y-H. Prognostication of a 13-immune-related-gene signature in patients with early triple-negative breast cancer. Breast Cancer Res Treat. 2020;184:325–34. https://doi.org/10.1007/s10549-020-05874-1.

    Article  PubMed  CAS  Google Scholar 

  44. Mollinedo F. Neutrophil degranulation, plasticity, and cancer metastasis. Trends Immunol. 2019;40:228–42. https://doi.org/10.1016/j.it.2019.01.006.

    Article  PubMed  CAS  Google Scholar 

  45. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132:2169–80. https://doi.org/10.1053/j.gastro.2007.03.059.

    Article  PubMed  CAS  Google Scholar 

  46. de Luca C, Olefsky JM. Inflammation and insulin resistance. Febs Lett. 2008;582:97–105. https://doi.org/10.1016/j.febslet.2007.11.057.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Kocaeli University Scientific Research Projects Coordination Unit under Grant no. 2019/092.

Funding

This study was supported by Kocaeli University Scientific Research Projects Coordination Unit under Grant no. 2019/092.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and experimental design were performed by MGBA, MK, and GA. Tissue collection with surgeries and storage were performed by TS, ZC, and SAG. Sample preparation and protein isolation were performed by MGBA and TŞ. Western Blot analysis, LC–MS/MS analysis and MS analysis were performed by MGB, MK, and GA. Bioinformatic analysis were performed by MGBA and GA. The first draft of the manuscript was written by MGBA. Writing, review, and editing the draft were performed by GA and MK. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gurler Akpinar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The Kocaeli University Ethics Committee has approved this work (approval numbers: KU GOKAEK-2019/16.05 2019/140). To protect the human subjects and maintain high ethical standards, Declaration of Helsinki was followed. All patients provided their written informed consents, and all the procedures were performed at Kocaeli University Hospital.

Consent to participate

Informed consents, approved by the ethics committee, were acquired from each patient.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albayrak, M.G.B., Simsek, T., Kasap, M. et al. Tissue proteome analysis revealed an association between cancer, immune system response, and the idiopathic granulomatous mastitis. Med Oncol 39, 238 (2022). https://doi.org/10.1007/s12032-022-01845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01845-2

Keywords

Navigation