Log in

Expressions of matrix metalloproteinase-7 and matrix metalloproteinase-14 associated with the activation of extracellular signal-regulated kinase1/2 in human brain gliomas of different pathological grades

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The purpose of this study is to determine whether the expressions of MMP-7 and MMP-14 are associated with the ERK 1/2 signaling pathway in human brain gliomas of different pathological grades. Immunohistochemistry and western blot methods were used to determine the expressions of MMP-7, MMP-14 and the phosphorylation status of ERK1/2 in 73 cases of human brain glioma specimens and two cases of normal brain tissues. Results indicated that the protein expression levels of MMP-7, MMP-14 and ERK1/2 phosphorylation level were all elevated with the increasing pathological grades in brain glioma tissues, and correlation assay indicated that the level of ERK1/2 phosphorylation was positively correlated with protein expression levels of MMP-7 and MMP-14 in gliomas of different pathological grades respectively. Moreover, the impact of ERK1/2 inhibitor U0126 on the expressions of MMP-7 and MMP-14 was examined in human U87 glioma cells by western blot analysis. The expressions of MMP-7 and MMP-14 were significantly decreased in human U87 glioma cells after treatment with ERK1/2 inhibitor U0126. The above results suggest that the expressions of MMP-7 and MMP-14 may be associated with activation of ERK1/2 signaling pathway in human brain gliomas of different pathological grades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003;3:489–501.

    Article  PubMed  CAS  Google Scholar 

  2. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol. 2000;10:415–33.

    Article  PubMed  CAS  Google Scholar 

  3. VanMeter TE, et al. The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J Neurooncol. 2001;53:213–35.

    Article  PubMed  CAS  Google Scholar 

  4. Ma Z, Qin H, Benveniste EN. Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-gamma and IFN-beta: critical role of STAT-1alpha. J Immunol. 2001;167:5150–9.

    PubMed  CAS  Google Scholar 

  5. Curran S, Murray GI. Matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 1999;189:300–8.

    Article  PubMed  CAS  Google Scholar 

  6. Stetler-Stevenson WG, Hewitt R, Corcoran M. Matrixmetalloproteinases and tumor invasion: from correlation and causality to the clinic. Semin Cancer Biol. 1996;7:147–54.

    Article  PubMed  CAS  Google Scholar 

  7. Misugi F, et al. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in uterine endometrial carcinoma and a correlation between expression of matrix metalloproteinase-7 and prognosis. Int J Mol Med. 2005;16:541–6.

    PubMed  CAS  Google Scholar 

  8. Ichikawa Y, et al. Function of MMP-7 in colorectal cancer. Nippon Rinsho. 2003;61:209–14.

    PubMed  Google Scholar 

  9. Lee KH, et al. Relationship between E-cadherin, matrix metalloproteinase-7 gene expression and clinicopathological features in gastric carcinoma. Oncol Rep. 2006;16:823–30.

    PubMed  CAS  Google Scholar 

  10. Liu D, et al. Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer. 2007;58:384–91.

    Article  PubMed  Google Scholar 

  11. Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood). 2006;231:20–7.

    CAS  Google Scholar 

  12. Maquoi E, et al. Membrane type 1 matrix metalloproteinase-associated degradation of tissue inhibitor of metalloproteinase 2 in human tumor cell lines. J Biol Chem. 2000;275:11368–78.

    Article  PubMed  CAS  Google Scholar 

  13. Shim KN, Jung SA, Joo YH, Yoo K. Clinical significance of tissue levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in gastric cancer. J Gastroenterol. 2007;42:120–8.

    Article  PubMed  CAS  Google Scholar 

  14. Ellenrieder V, et al. Role of MT-MMPs and MMP-2 in pancreatic cancer progression. Int J Cancer. 2000;85:14–20.

    Article  PubMed  CAS  Google Scholar 

  15. Adley BP, Gleason KJ, Yang XJ, Stack MS. Expression of membrane type 1 matrix metalloproteinase (MMP-14) in epithelial ovarian cancer: high level expression in clear cell carcinoma. Gynecol Oncol. 2009;112:319–24.

    Article  PubMed  CAS  Google Scholar 

  16. de Vicente JC, Leguerica-Fernández P, Santamaría J, Fresno MF. Expression of MMP-7 and MT1-MMP in oral squamous cell carcinoma as predictive indicator for tumor invasion and prognosis. J Oral Pathol Med. 2007;36:415–24.

    Article  PubMed  Google Scholar 

  17. Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 2003;22:395–403.

    Article  PubMed  CAS  Google Scholar 

  18. Kunapuli P, Kasyapa CS, Hawthorn L, Cowell JK. LGI1, a putative tumor metastasis suppressor gene, controls in vitro invasiveness and expression of matrix metalloproteinases in glioma cells through the ERK1/2 pathway. J Biol Chem. 2004;279:23151–7.

    Article  PubMed  CAS  Google Scholar 

  19. Kim JH, Choi C, Benveniste EN, Kwon D. TRAIL induces MMP-9 expression via ERK activation in human astrocytoma cells. Biochem Biophys Res Commun. 2008;377:195–9.

    Article  PubMed  CAS  Google Scholar 

  20. Rome C, Arsaut J, Taris C, Couillaud F, Loiseau H. MMP-7 (Matrilysin) expression in human brain tumors. Mol Carcinog. 2007;46:446–52.

    Article  PubMed  CAS  Google Scholar 

  21. Nakada M, et al. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am J Pathol. 1999;154:417–28.

    Article  PubMed  CAS  Google Scholar 

  22. Guo P, et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane Type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol. 2005;166:877–90.

    Article  PubMed  CAS  Google Scholar 

  23. Inamoto T, et al. Invasive ability of human renal cell carcinoma cell line Caki-2 is accelerated by gamma-aminobutyric acid, via sustained activation of ERK1/2 inducible matrix metalloproteinases. Cancer Invest. 2007;25:574–83.

    Article  PubMed  CAS  Google Scholar 

  24. Jelinek T, Dent P, Sturgill TW, Weber MJ. Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation. Mol Cell Biol. 1996;16:1027–34.

    PubMed  CAS  Google Scholar 

  25. Kaomongkolgit R, Cheeosunthorn P, Pavasant P, Sanchavanakit N. Iron increase MMP-9 expression through activation of AP-1 via ERK/Akt pathway in human head and neck squamous carcinoma cells. Oral Oncol. 2008;44:587–94.

    Article  PubMed  CAS  Google Scholar 

  26. Lee SJ, et al. Activation of matrix metalloproteinase-9 by TNF-α in human urinary bladder cancer HT1376 cells: The role of MAP kinase signaling pathways. Oncol Rep. 2008;19:1007–13.

    PubMed  CAS  Google Scholar 

  27. Tan CT, et al. CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-1 pathway. Carcinogenesis. 2008;29:1519–27.

    Article  PubMed  CAS  Google Scholar 

  28. Lopez-Gines C, et al. The activation of ERK1/2 MAP kinases in glioblastoma pathobiology and its relationship with EGFR amplification. Neuropathology. 2008;28:507–15.

    Article  PubMed  Google Scholar 

  29. Bhaskara VK, Panigrahi M, Challa S, Babu PP. Comparative status of activated ERK1/2 and PARP cleavage in human gliomas. Neuropathology. 2005;25:48–53.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China, under contract numbers 30800451, 30872656, 30700861, 30670723, and 30973079; Scientific and Technological Research Projects in Colleges and Universities of Liaoning Province, number 2008850; the special fund for Scientific Research of Doctor-degree Subjects in Colleges and Universities, number 20092104110015; and Scientific and Technological Planning Projects of Shenyang, numbers 1072033-1-00 and 1081266-9-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-xue Xue.

Additional information

Hui **e, Yi-xue Xue contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

**e, H., Xue, Yx., Liu, Lb. et al. Expressions of matrix metalloproteinase-7 and matrix metalloproteinase-14 associated with the activation of extracellular signal-regulated kinase1/2 in human brain gliomas of different pathological grades. Med Oncol 28 (Suppl 1), 433–438 (2011). https://doi.org/10.1007/s12032-010-9660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9660-7

Keywords

Navigation