Log in

Death Receptor 6 and Caspase-6 Regulate Prion Peptide-Induced Axonal Degeneration in Rat Spinal Neurons

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Axonal degeneration is a hallmark of many neurodegenerative disorders including transmissible spongiform encephalopathies (TSE). However, the full complement of axonal degeneration triggers is not fully understood. In an in vitro prion model, we observed that treatment of rat spinal neurons with the prion peptide, PrP106-126, activated death receptor 6 (DR6, also known as TNFRSF21), caspase-6, caspase-3, and induced axonal degeneration. Knockdown of DR6 by siRNA blocked caspase-6 and caspase-3 activation and axonal degeneration. We also found that cleaved caspase-3 is only enriched in cell bodies, but cleaved caspase-6 is expressed in both cell bodies and axons. Axonal degeneration was prevented by preincubation of neurons with a caspase-6 inhibitor or siRNA of caspase-6. Our findings suggest that both DR6 and caspase-6 play important roles in axonal degeneration and caspase-6 acts downstream of DR6. We also observed that nicotinamide nucleotide adenylyltransferase 1 protein (Nmnat1), which had been reported to protect neurons from degeneration, alleviated axonal degeneration without blocking caspase-6 activation, suggesting that Nmnat acts downstream or parallel to caspase-6 activation. Our results indicate that PrP106-126 triggered axonal degeneration of the spinal cord neurons, DR6 is a key regulator of axonal degeneration, and the signaling pathway of DR6/caspase-6 mediates axonal degeneration induced by the prion fragment. Our findings raise the hope of targeting the DR6 as a potential therapeutic strategy in prion-related neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bossen C et al (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 281(20):13964–13971

    Article  CAS  PubMed  Google Scholar 

  • Buss RR, Sun W, Oppenheim RW (2006) Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci 29:1–35

    Article  CAS  PubMed  Google Scholar 

  • Coleman MP, Perry VH (2002) Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 25(10):532–537

    Article  CAS  PubMed  Google Scholar 

  • Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10(5):319–332

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C et al (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17(10):2147–2155

    Article  CAS  PubMed  Google Scholar 

  • Cusack CL et al (2013) Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun 4:1876

    Article  PubMed Central  PubMed  Google Scholar 

  • Forloni G et al (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann M et al (2007) Dendritic pathology in prion disease starts at the synaptic spine. J Neurosci 27(23):6224–6233

    Article  CAS  PubMed  Google Scholar 

  • Gerdts J et al (2013) Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J Neurosci 33(33):13569–13580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gray BC et al (2009) Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology. Neurobiol Dis 35(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Guo H et al (2004) Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 165(2):523–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haase G et al (2008) Signaling by death receptors in the nervous system. Curr Opin Neurobiol 18(3):284–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henriques ST et al (2008) PrP(106–126) does not interact with membranes under physiological conditions. Biophys J 95(4):1877–1889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horowitz PM et al (2004) Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J Neurosci 24(36):7895–7902

    Article  CAS  PubMed  Google Scholar 

  • Hu Y et al (2013) A DR6/p75(NTR) complex is responsible for beta-amyloid-induced cortical neuron death. Cell Death Dis 4:e579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang G et al (2013) Death receptor 6 (DR6) antagonist antibody is neuroprotective in the mouse SOD1G93A model of amyotrophic lateral sclerosis. Cell Death Dis 4:e841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffrey M et al (2000) Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 26(1):41–54

    Article  CAS  PubMed  Google Scholar 

  • Klaiman G et al (2008) Targets of caspase-6 activity in human neurons and Alzheimer disease. Mol Cell Proteomics 7(8):1541–1555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H et al (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci 21(21):8473–8481

    CAS  PubMed  Google Scholar 

  • Luo L, O’Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156

    Article  CAS  PubMed  Google Scholar 

  • Medana IM, Esiri MM (2003) Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126(Pt 3):515–530

    Article  CAS  PubMed  Google Scholar 

  • Mi S et al (2011) Death receptor 6 negatively regulates oligodendrocyte survival, maturation and myelination. Nat Med 17(7):816–821

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev A et al (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novitskaya V et al (2007) Amyloid fibrils of mammalian prion protein induce axonal degeneration in NTERA2-derived terminally differentiated neurons. J Neurochem 102(2):398–407

    Article  CAS  PubMed  Google Scholar 

  • Pan G et al (1998) Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 431(3):351–356

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1991) Molecular biology of prion diseases. Science 252(5012):1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296(5569):868–871

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 23(8):3316–3324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sagot Y et al (1995) Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J Neurosci 15(11):7727–7733

    CAS  PubMed  Google Scholar 

  • Saxena S, Caroni P (2007) Mechanisms of axon degeneration: from development to disease. Prog Neurobiol 83(3):174–191

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Osthoff K et al (1998) Apoptosis signaling by death receptors. Eur J Biochem 254(3):439–459

    Article  CAS  PubMed  Google Scholar 

  • Scott JR (1993) Scrapie pathogenesis. Br Med Bull 49(4):778–791

    CAS  PubMed  Google Scholar 

  • Selvaggini C et al (1993) Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. Biochem Biophys Res Commun 194(3):1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Shi F et al (2012) The NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation. J Neuroinflammation 9:73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simon DJ et al (2012) A caspase cascade regulating developmental axon degeneration. J Neurosci 32(49):17540–17553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siskova Z et al (2009) Degenerating synaptic boutons in prion disease: microglia activation without synaptic strip**. Am J Pathol 175(4):1610–1621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stokin GB et al (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307(5713):1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Taimen P, Kallajoki M (2003) NuMA and nuclear lamins behave differently in Fas-mediated apoptosis. J Cell Sci 116(Pt 3):571–583

    Article  CAS  PubMed  Google Scholar 

  • Uribe V et al (2012) Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice. Hum Mol Genet 21(9):1954–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vohra BP et al (2010) Amyloid precursor protein cleavage-dependent and -independent axonal degeneration programs share a common nicotinamide mononucleotide adenylyltransferase 1-sensitive pathway. J Neurosci 30(41):13729–13738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watts RJ, Hoopfer ED, Luo L (2003) Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38(6):871–885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Project No. 31272532 and No. 31172293), the Ministry of Agriculture Program of China (No. 2013-S11 and No. 2014-S9), and the Program for Cheung Kong Scholars and Innovative Research Team in the University of China (No. IRT0866).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Yang.

Additional information

Yunsheng Wang and Deming Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, D., Pan, B. et al. Death Receptor 6 and Caspase-6 Regulate Prion Peptide-Induced Axonal Degeneration in Rat Spinal Neurons. J Mol Neurosci 56, 966–976 (2015). https://doi.org/10.1007/s12031-015-0562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0562-1

Keyword

Navigation