Log in

NRSF: an Angel or a Devil in Neurogenesis and Neurological Diseases

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The neuron-restrictive silencer factor (NRSF) a transcriptional regulator that function as a hub that coordinately regulates multiple aspects of neurogenesis, orchestrates neural differentiation, and preserves the unique neural phenotype. NRSF also acts as an oncogene in neural tumorigenesis, although its effect differs depending on the cell type and tissues. Intriguingly, far more than above functions, potential roles for NRSF and its target genes have also been implicated in the pathogenesis and therapeutic mechanism of neurodegenerative diseases. NRSF acts as a flexible and complicated regulator in nervous system, from transcriptional repressor to activator or modulator, and plays a part in neuronal survival or neuronal death. Here, we present the mechanisms proposed to account for the multiple roles of NRSF in neurogenesis and neurological diseases and discuss the therapeutic perspective of recent advances. The mechanisms underlying this duality of NRSF are helpful to understanding the physiological and pathological conditions of neurons and provide new therapeutic approaches to neurological disorders and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13:11–26

    CAS  PubMed  Google Scholar 

  • Andres ME, Burger C, Peral-Rubio MJ et al (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci U S A 96:9873–9878

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aoki H, Hara A, Era T et al (2012) Genetic ablation of Rest leads to in vitro-specific derepression of neuronal genes during neurogenesis. Development 139:667–677

    CAS  PubMed  Google Scholar 

  • Bahn S, Mimmack M, Ryan M et al (2002) Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet 359:310–315

    CAS  PubMed  Google Scholar 

  • Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506

    CAS  PubMed  Google Scholar 

  • Ballas N, Grunseich C, Lu DD et al (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Baryawno N, Sveinbjornsson B, Eksborg S et al (2010) Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res 70:266–276

    CAS  PubMed  Google Scholar 

  • Belyaev ND, Wood IC, Bruce AW et al (2004) Distinct RE-1 silencing transcription factor-containing complexes interact with different target genes. J Biol Chem 279:556–561

    CAS  PubMed  Google Scholar 

  • Berendsen S, Broekman M, Seute T et al (2012) Valproic acid for the treatment of malignant gliomas: Review of the preclinical rationale and published clinical results. Expert Opin Investig Drugs 21:1391–1415

    CAS  PubMed  Google Scholar 

  • Bonev B, Stanley P, Papalopulu N (2012) MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep 2:10–18

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bruce AW, Donaldson IJ, Wood IC et al (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A 101:10458–10463

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bruce AW, Krejci A, Ooi L et al (2006) The transcriptional repressor REST is a critical regulator of the neurosecretory phenotype. J Neurochem 98:1828–1840

    CAS  PubMed  Google Scholar 

  • Buckley NJ, Johnson R, Sun YM et al (2009) Is REST a regulator of pluripotency? Nature 457:E5–E6, E7

    CAS  PubMed  Google Scholar 

  • Cai L, Bian M, Liu M et al (2011) Ethanol-induced neurodegeneration in NRSF/REST neuronal conditional knockout mice. Neuroscience 181:196–205

    CAS  PubMed  Google Scholar 

  • Calderone A, Jover T, Noh KM et al (2003) Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci 23:2112–2121

    CAS  PubMed  Google Scholar 

  • Chen ZF, Paquette AJ, Anderson DJ (1998) NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat Genet 20:136–142

    CAS  PubMed  Google Scholar 

  • Chong JA, Tapia-Ramirez J, Kim S et al (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957

    CAS  PubMed  Google Scholar 

  • Conaco C, Otto S, Han JJ et al (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427

    PubMed Central  CAS  PubMed  Google Scholar 

  • Conforti P, Zuccato C, Gaudenzi G et al (2013) Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington’s disease models. J Neurochem 127:22–35

    CAS  PubMed  Google Scholar 

  • Conti L, Crisafulli L, Caldera V et al (2012) REST controls self-renewal and tumorigenic competence of human glioblastoma cells. PLoS One 7:e38486

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coulson JM, Edgson JL, Woll PJ et al (2000) A splice variant of the neuron-restrictive silencer factor repressor is expressed in small cell lung cancer: a potential role in derepression of neuroendocrine genes and a useful clinical marker. Cancer Res 60:1840–1844

    CAS  PubMed  Google Scholar 

  • Covey MV, Streb JW, Spektor R et al (2012) REST regulates the pool size of the different neural lineages by restricting the generation of neurons and oligodendrocytes from neural stem/progenitor cells. Development 139:2878–2890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cruciat CM, Dolde C, de Groot RE et al (2013) RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-beta-catenin signaling. Science 339:1436–1441

    CAS  PubMed  Google Scholar 

  • D’Adda DFF, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Google Scholar 

  • D’Alessandro R, Klajn A, Stucchi L et al (2008) Expression of the neurosecretory process in PC12 cells is governed by REST. J Neurochem 105:1369–1383

    PubMed  Google Scholar 

  • Das CM, Taylor P, Gireud M et al (2013) The deubiquitylase USP37 links REST to the control of p27 stability and cell proliferation. Oncogene 32:1691–1701

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dietrich N, Lerdrup M, Landt E et al (2012) REST-mediated recruitment of polycomb repressor complexes in mammalian cells. PLoS Genet 8:e1002494

    PubMed Central  CAS  PubMed  Google Scholar 

  • Donev RM, Gray LC, Sivasankar B et al (2008) Modulation of CD59 expression by restrictive silencer factor-derived peptides in cancer immunotherapy for neuroblastoma. Cancer Res 68:5979–5987

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ekici M, Hohl M, Schuit F et al (2008) Transcription of genes encoding synaptic vesicle proteins in human neural stem cells: chromatin accessibility, histone methylation pattern, and the essential role of rest. J Biol Chem 283:9257–9268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fasano CA, Phoenix TN, Kokovay E et al (2009) Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev 23:561–574

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fowler A, Thomson D, Giles K et al (2011) miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur J Cancer 47:953–963

    CAS  PubMed  Google Scholar 

  • Fuller GN, Su X, Price RE et al (2005) Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol Cancer Ther 4:343–349

    CAS  PubMed  Google Scholar 

  • Gao Z, Ure K, Ding P et al (2011) The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 31:9772–9786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garriga-Canut M, Schoenike B, Qazi R et al (2006) 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387

    CAS  PubMed  Google Scholar 

  • Gates KP, Mentzer L, Karlstrom RO et al (2010) The transcriptional repressor REST/NRSF modulates hedgehog signaling. Dev Biol 340:293–305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Greenway DJ, Street M, Jeffries A et al (2007) RE1 Silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells. Stem Cells 25:354–363

    CAS  PubMed  Google Scholar 

  • Grimes JA, Nielsen SJ and Battaglioli E, et al. (2000) The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. Journal Of Biological Chemistry 275: 9461-9467

  • Guardavaccaro D, Frescas D, Dorrello NV et al (2008) Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature 452:365–369

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanashima C, Li SC, Shen L et al (2004) Foxg1 suppresses early cortical cell fate. Science 303:56–59

    CAS  PubMed  Google Scholar 

  • Hatano Y, Yamada Y, Hata K et al (2011) Genetic ablation of a candidate tumor suppressor gene, rest, does not promote mouse colon carcinogenesis. Cancer Sci 102:1659–1664

    CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    CAS  PubMed  Google Scholar 

  • Hu XL, Cheng X, Cai L et al (2011) Conditional deletion of NRSF in forebrain neurons accelerates epileptogenesis in the kindling model. Cereb Cortex 21:2158–2165

    PubMed  Google Scholar 

  • Huang Z, Bao S (2012) Ubiquitination and deubiquitination of REST and its roles in cancers. Febs Lett 586:1602–1605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang YZ, McNamara JO (2006) Inhibiting glycolysis to reduce seizures: how it might work. Nat Neurosci 9:1351–1352

    CAS  PubMed  Google Scholar 

  • Huang X, Summers MK, Pham V et al (2011a) Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol Cell 42:511–523

    CAS  PubMed  Google Scholar 

  • Huang Z, Wu Q, Guryanova OA et al (2011b) Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nat Cell Biol 13:142–152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hummel R, Maurer J, Haier J (2011) MicroRNAs in brain tumors: a new diagnostic and therapeutic perspective? Mol Neurobiol 44:223–234

    CAS  PubMed  Google Scholar 

  • Hwang JY, Kaneko N, Noh KM et al (2014) The gene silencing transcription factor REST represses miR-132 expression in hippocampal neurons destined to die. J Mol Biol 426:3454–3466

    CAS  PubMed  Google Scholar 

  • Jiang L, Yao M, Shi J et al (2008) Yin yang 1 directly regulates the transcription of RE-1 silencing transcription factor. J Neurosci Res 86:1209–1216

    CAS  PubMed  Google Scholar 

  • Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide map** of in vivo protein-DNA interactions. Science 316:1497–1502

    CAS  PubMed  Google Scholar 

  • Jorgensen HF, Chen ZF et al (2009a) Is REST required for ESC pluripotency? Nature 457:E4–E5, E7

    CAS  PubMed  Google Scholar 

  • Jorgensen HF, Terry A et al (2009b) REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development 136:715–721

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T, Kobayashi T (2008) Roles of Hes genes in neural development. Develop Growth Differ 50(Suppl 1):S97–S103

    CAS  Google Scholar 

  • Kamal MM, Sathyan P, Singh SK et al (2012) REST regulates oncogenic properties of glioblastoma stem cells. Stem Cells 30:405–414

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaneko N, Hwang JY, Gertner M et al (2014) Casein kinase 1 suppresses activation of REST in insulted hippocampal neurons and halts ischemia-induced neuronal death. J Neurosci 34:6030–6039

    PubMed Central  PubMed  Google Scholar 

  • Kim CS, Hwang CK, Choi HS et al (2004) Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the mu opioid receptor gene. J Biol Chem 279:46464–46473

    CAS  PubMed  Google Scholar 

  • Kreisler A, Strissel PL, Strick R et al (2010) Regulation of the NRSF/REST gene by methylation and CREB affects the cellular phenotype of small-cell lung cancer. Oncogene 29:5828–5838

    CAS  PubMed  Google Scholar 

  • Laneve P, Gioia U, Andriotto A et al (2010) A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Res 38:6895–6905

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lemonde S, Rogaeva A, Albert PR (2004) Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene. J Neurochem 88:857–868

    CAS  PubMed  Google Scholar 

  • Loe-Mie Y, Lepagnol-Bestel AM, Maussion G et al (2010) SMARCA2 and other genome-wide supported schizophrenia-associated genes: Regulation by REST/NRSF, network organization and primate-specific evolution. Hum Mol Genet 19:2841–2857

    CAS  PubMed  Google Scholar 

  • Lu T, Aron L, Zullo J et al (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lunyak VV, Burgess R and Prefontaine GG, et al. (2002) Corepressordependent silencing of chromosomal regions encoding neuronal genes. Science 298: 1747–1752

  • Lv H, Pan G, Zheng G et al (2010) Expression and functions of the repressor element 1 (RE-1)-silencing transcription factor (REST) in breast cancer. J Cell Biochem 110:968–974

    CAS  PubMed  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA et al (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moss AC, Jacobson GM, Walker LE et al (2009) SCG3 transcript in peripheral blood is a prognostic biomarker for REST-deficient small cell lung cancer. Clin Cancer Res 15:274–283

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Kuwahara K and Harada M, et al. (2006) Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes. Journal Of Molecular And Cellular Cardiology 41: 1010–1022

  • Naruse Y, Aoki T and Kojima T, et al. (1999) Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc Natl Acad Sci U S A 96: 13691–13696

  • Negrini S, Prada I, D’Alessandro R et al (2013) REST: an oncogene or a tumor suppressor? Trends Cell Biol 23:289–295

    CAS  PubMed  Google Scholar 

  • Nesti E, Corson GM, McCleskey M et al (2014) C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc Natl Acad Sci U S A 111:E3929–E3936

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ning H, Li T, Zhao L et al (2006) TRF2 promotes multidrug resistance in gastric cancer cells. Cancer Biol Ther 5:950–956

    CAS  PubMed  Google Scholar 

  • Nishihara S, Tsuda L, Ogura T (2003) The canonical Wnt pathway directly regulates NRSF/REST expression in chick spinal cord. Biochem Biophys Res Commun 311:55–63

    CAS  PubMed  Google Scholar 

  • Noh KM, Hwang JY, Follenzi A et al (2012) Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc Natl Acad Sci U S A 109:E962–E971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohnuki T, Nakamura A, Okuyama S et al (2010) Gene expression profiling in progressively MPTP-lesioned macaques reveals molecular pathways associated with sporadic Parkinson’s disease. Brain Res 1346:26–42

    CAS  PubMed  Google Scholar 

  • Ooi L, Belyaev ND and Miyake K, et al. (2006) BRG1 chromatin remodeling activity is required for efficient chromatin binding by repressor element 1-silencing transcription factor (REST) and facilitates REST-mediated repression. Journal Of Biological Chemistry 281: 38974–38980

  • Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: Lessons from REST. Nat Rev Genet 8:544–554

    CAS  PubMed  Google Scholar 

  • Ovando-Roche P, Yu JS, Testori S et al (2014) TRF2-mediated stabilization of hREST4 is critical for the differentiation and maintenance of neural progenitors. Stem Cells 32:2111–2122

    CAS  PubMed  Google Scholar 

  • Packer AN, **ng Y, Harper SQ et al (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal Of Neuroscience 28:14341–14346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palm K, Belluardo N, Metsis M et al (1998) Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. Journal Of Neuroscience 18:1280–1296

    CAS  PubMed  Google Scholar 

  • Palm K, Metsis M, Timmusk T (1999) Neuron-specific splicing of zinc finger transcription factor REST/NRSF/XBR is frequent in neuroblastomas and conserved in human, mouse and rat. Brain Res Mol Brain Res 72:30–39

    CAS  PubMed  Google Scholar 

  • Pozzi D, Lignani G, Ferrea E et al (2013) REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. Embo J 32:2994–3007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quinn JP, Warburton A, Myers P et al (2013) Polymorphic variation as a driver of differential neuropeptide gene expression. Neuropeptides 47:395–400

    CAS  PubMed  Google Scholar 

  • Qureshi IA, Gokhan S, Mehler MF (2010) REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions. Cell Cycle 9:4477–4486

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raj B, O’Hanlon D, Vessey JP et al (2011) Cross-regulation between an alternative splicing activator and a transcription repressor controls neurogenesis. Mol Cell 43:843–850

    CAS  PubMed  Google Scholar 

  • Ravache M, Weber C, Merienne K et al (2010) Transcriptional activation of REST by Sp1 in Huntington’s disease models. PLoS One 5:e14311

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ren X, Kerppola TK (2011) REST interacts with Cbx proteins and regulates polycomb repressive complex 1 occupancy at RE1 elements. Mol Cellu Biol 31:2100–2110

    CAS  Google Scholar 

  • Rockowitz S, Lien WH, Pedrosa E et al (2014) Comparison of REST cistromes across human cell types reveals common and context-specific functions. PLoS Comput Biol 10:e1003671

    PubMed Central  PubMed  Google Scholar 

  • Rodenas-Ruano A, Chavez AE, Cossio MJ et al (2012) REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15:1382–1390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roopra A, Qazi R and Schoenike B, et al. (2004a) Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Molecular Cell 14: 727–738

  • Roopra A, Qazi R and Schoenike B, et al. (2004b) Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Molecular Cell 14: 727–738

  • Sanson M, Laigle-Donadey F, Benouaich-Amiel A (2006) Molecular changes in brain tumors: Prognostic and therapeutic impact. Curr Opin Oncol 18:623–630

    CAS  PubMed  Google Scholar 

  • Schilling G, Becher MW, Sharp AH et al (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407

    CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363

    CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci U S A 93:9881–9886

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sedaghat Y, Bui HH, Mazur C et al (2013) Identification of REST-regulated genes and pathways using a REST-targeted antisense approach. Nucleic Acid Ther 23:389–400

    CAS  PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    PubMed Central  PubMed  Google Scholar 

  • Shi Y, Chichung LD, Taupin P et al (2004) Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427:78–83

    CAS  PubMed  Google Scholar 

  • Shimojo M (2008) Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. J Biol Chem 283:34880–34886

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shimojo M, Hersh LB (2006) Characterization of the REST/NRSF-interacting LIM domain protein (RILP): Localization and interaction with REST/NRSF. J Neurochem 96:1130–1138

    CAS  PubMed  Google Scholar 

  • Shimojo M, Paquette AJ, Anderson DJ et al (1999) Protein kinase A regulates cholinergic gene expression in PC12 cells: REST4 silences the silencing activity of neuron-restrictive silencer factor/REST. Mol Cell Biol 19:6788–6795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh SK, Kagalwala MN, Parker-Thornburg J et al (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh A, Rokes C, Gireud M et al (2011) Retinoic acid induces REST degradation and neuronal differentiation by modulating the expression of SCF(beta-TRCP) in neuroblastoma cells. Cancer 117:5189–5202

    CAS  PubMed  Google Scholar 

  • Singh SK, Veo BL, Kagalwala MN et al (2012) Dynamic status of REST in the mouse ESC pluripotency network. PLoS One 7:e43659

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith R, Chung H, Rundquist S et al (2006) Cholinergic neuronal defect without cell loss in Huntington’s disease. Hum Mol Genet 15:3119–3131

    CAS  PubMed  Google Scholar 

  • Soldati C, Bithell A, Conforti P et al (2011) Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington’s disease. J Neurochem 116:415–425

    CAS  PubMed  Google Scholar 

  • Soldati C, Bithell A, Johnston C et al (2012) Repressor element 1 silencing transcription factor couples loss of pluripotency with neural induction and neural differentiation. Stem Cells 30:425–434

    CAS  PubMed  Google Scholar 

  • Spencer EM, Chandler KE, Haddley K et al (2006) Regulation and role of REST and REST4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models. Neurobiol Dis 24:41–52

    CAS  PubMed  Google Scholar 

  • Stapels M, Piper C, Yang T et al (2010) Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal 3:a15

    Google Scholar 

  • Tabuchi A, Yamada T, Sasagawa S et al (2002) REST4-mediated modulation of REST/NRSF-silencing function during BDNF gene promoter activation. Biochem Biophys Res Commun 290:415–420

    CAS  PubMed  Google Scholar 

  • Tahiliani M, Mei P, Fang R et al (2007) The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447:601–605

    CAS  PubMed  Google Scholar 

  • Taylor P, Fangusaro J, Rajaram V et al (2012) REST is a novel prognostic factor and therapeutic target for medulloblastoma. Mol Cancer Ther 11:1713–1723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thiel G, Ekici M, Rossler OG (2014) RE-1 silencing transcription factor (REST): a regulator of neuronal development and neuronal/endocrine function. Cell Tissue Res. doi:10.1007/s00441-014-1963-0

  • Tomasoni R, Negrini S, Fiordaliso S et al (2011) A signaling loop of REST, TSC2 and beta-catenin governs proliferation and function of PC12 neural cells. J Cell Sci 124:3174–3186

    CAS  PubMed  Google Scholar 

  • Tsai LH, Madabhushi R (2014) Alzheimer’s disease: a protective factor for the ageing brain. Nature 507:439–440

    CAS  PubMed  Google Scholar 

  • Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    PubMed Central  CAS  PubMed  Google Scholar 

  • Uchida S, Hara K, Kobayashi A et al (2010) Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 30:15007–15018

    CAS  PubMed  Google Scholar 

  • Valouev A, Johnson DS, Sundquist A et al (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5:829–834

    PubMed Central  CAS  PubMed  Google Scholar 

  • Visvanathan J, Lee S, Lee B et al (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wagoner MP, Roopra A (2012) A REST derived gene signature stratifies glioblastomas into chemotherapy resistant and responsive disease. BMC Genomics 13:686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wagoner MP, Gunsalus KT, Schoenike B et al (2010) The transcription factor REST is lost in aggressive breast cancer. PLoS Genet 6:e1000979

    PubMed Central  PubMed  Google Scholar 

  • Warburton A, Breen G, Rujescu D et al (2014) Characterization of a REST-regulated internal promoter in the schizophrenia genome-wide associated gene MIR137. Schizophr Bull. doi:10.1093/schbul/sbu117

  • Warburton A, Savage AL, Myers P et al (2015) Molecular signatures of mood stabilisers highlight the role of the transcription factor REST/NRSF. J Affect Disord 172:63–73

    PubMed Central  CAS  Google Scholar 

  • Westbrook TF, Hu G, Ang XL et al (2008) SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452:370–374

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wong HK, Veremeyko T, Patel N et al (2013) De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet 22:3077–3092

    CAS  PubMed  Google Scholar 

  • **a H, Cheung WK, Ng SS et al (2012) Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 287:9962–9971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada Y, Aoki H, Kunisada T et al (2010) Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance. Cell Stem Cell 6:10–15

    CAS  PubMed  Google Scholar 

  • Yoo AS, Staahl BT, Chen L et al (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu M, Cai L, Liang M et al (2009) Alteration of NRSF expression exacerbating 1-methyl-4-phenyl-pyridinium ion-induced cell death of SH-SY5Y cells. Neurosci Res 65:236–244

    CAS  PubMed  Google Scholar 

  • Yu HB, Johnson R, Kunarso G et al (2011) Coassembly of REST and its cofactors at sites of gene repression in embryonic stem cells. Genome Res 21:1284–1293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu M, Suo H, Liu M et al (2013) NRSF/REST neuronal deficient mice are more vulnerable to the neurotoxin MPTP. Neurobiol Aging 34:916–927

    CAS  PubMed  Google Scholar 

  • Zhang P, Pazin MJ, Schwartz CM et al (2008) Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr Biol 18:1489–1494

    PubMed Central  PubMed  Google Scholar 

  • Zhang P, Lathia JD, Flavahan WA et al (2009) Squelching glioblastoma stem cells by targeting REST for proteasomal degradation. Trends Neurosci 32:559–565

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang K, Biswas N, Gayen JR et al (2014) Chromogranin B: Intra- and extra-cellular mechanisms to regulate catecholamine storage and release, in catecholaminergic cells and organisms. J Neurochem 129:48–59

    CAS  PubMed  Google Scholar 

  • Zheng D, Zhao K, Mehler MF (2009) Profiling RE1/REST-mediated histone modifications in the human genome. Genome Biol 10:R9

    PubMed Central  PubMed  Google Scholar 

  • Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330

    CAS  PubMed  Google Scholar 

  • Zuccato C, Tartari M, Crotti A et al (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83

    CAS  PubMed  Google Scholar 

  • Zuccato C, Belyaev N, Conforti P et al (2007) Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 27:6972–6983

    CAS  PubMed  Google Scholar 

  • Zukin RS (2010) Eradicating the mediators of neuronal death with a fine-tooth comb. Sci Signal 3:e20

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Project No. 31172293, No. 31272532, and No.31472166), 948 projects (2013-S11; 2014-S9), and the Program for Cheung Kong Scholars and Innovative Research Team in University of China (No. IRT0866).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Zhao, D., Zhao, H. et al. NRSF: an Angel or a Devil in Neurogenesis and Neurological Diseases. J Mol Neurosci 56, 131–144 (2015). https://doi.org/10.1007/s12031-014-0474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0474-5

Keywords

Navigation