Log in

How the immune response to the structural proteins of SARS-CoV-2 affects the retinal vascular endothelial cells: an immune thrombotic and/or endotheliopathy process with in silico modeling

  • ORIGINAL ARTICLE
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Thrombotic events associated with SARS-CoV-2 at the vascular endothelium still remains unclear. The aim of the current study is to determine the relationship between cellular proteins on the (ocular) vascular endothelial surface and the immune thrombotic and/or endotheliopathy process elicited by SARS-CoV-2 using an in-silico modeling. The structural S (spike glycoprotein), N (nucleocapsid protein), M (membrane protein), and E (envelope protein) proteins, an accessory protein (ORF1ab) of SARS-CoV-2 and 158 cellular proteins associated with retinal vascular endothelial cell surface or structure were included in this study for comparison of three-dimensional (3D) structure and sequence. Sixty-nine of the retinal proteins were obtained from the Uniprot database. Remaining proteins not included in the database were included in the study after they were converted into 3D structures using the RaptorX web tool. Sequence and three-dimensional structure of SARS-COV-2 S, N, M, E, ORF1ab proteins and retinal vascular endothelial proteins were compared with mTM-align server. Proteins with significant similarity (score above 0.5) were validated with the TM-align web server. Immune and thrombosis-related protein-receptor interactions of similar proteins was checked with CABS-dock. We detected a high level of structural similarity between E protein and ACE, ACE2, LAT1, and TM9SF4 endothelial proteins. In addition, PECAM-1 was found to be structurally similar to ORF1ab and S protein. When we evaluated the likelihood/potential to stimulate an immune responses/a cytokine release, TLR-2 and TLR-3, which are highly susceptible to SARS-CoV2, showed a potential receptor-protein interaction with retinal vascular endothelial proteins. Our study demonstrates that SARS-CoV-2 proteins may have structural similarities with vascular endothelial proteins, and therefore, as immunological target sites, the counterpart proteins on the endothelial surface of many organs may also be secondarily affected by any immune response against SARS-CoV-2 structural proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data availability statements were mentioned in methodology section.

References

  1. Sen S, Kannan NB, Kumar J, et al. Retinal manifestations in patients with SARS-CoV-2 infection and pathogenetic implications: a systematic review. Int Ophthalmol. 2022;42(1):323–36. https://doi.org/10.1007/s10792-021-01996-7.

    Article  PubMed  Google Scholar 

  2. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438–440440.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV, Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;S0049–3848(20):30120–1.

    Google Scholar 

  4. Klok FA, Kruip MJHA, van der Meer NJM. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;191:148–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cavalcanti DD, Raz E, Shapiro M, Dehkharghani S, Yaghi S, Lillemoe K, et al. Cerebral venous thrombosis associated with COVID-19. Am J Neuroradiol. 2020;41:1370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Artifoni M, Danic G, Gautier G, Gicquel P, Boutoille D, Raffi F, et al. Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: incidence and role of D-dimer as predictive factors. J Thromb Thrombolysis. 2020;50(1):211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis. 2020;50:54–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marchetti M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol. 2020;99:1701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Casagrande M, Fitzek A, Pu¨schel K, et al. Detection of SARS-CoV-2 in human retinal biopsies of deceased COVID-19 patients. Ocul Immunol Inflamm. 2020;28:721–5.

    Article  CAS  PubMed  Google Scholar 

  10. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marinho PM, Marcos AAA, Romano AC, Nascimento H, Belfort R Jr. Retinal findings in patients with COVID-19. Lancet. 2020;395(10237):1610. https://doi.org/10.1016/S0140-6736(20)31014-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schnichels S, Rohrbach JM, Bayyoud T, Thaler S, Ziemssen F, Hurst J. Kann SARS-CoV-2 das Auge infizieren? – Ein Überblicküber den Rezeptorstatus in okularemGewebe [Can SARS-CoV-2 infect the eye?-An overview of the receptor status in ocular tissue]. Ophthalmologe. 2020;117(7):618–21. https://doi.org/10.1007/s00347-020-01160-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naughton A, Ong AY, Gkika T, Downes S. Bilateral paracentral acute middle maculopathy in a SARS-CoV-2-positive patient. Postgrad Med J. 2021;98(2):105–6. https://doi.org/10.1136/postgradmedj-2021-140500.

    Article  Google Scholar 

  15. Landecho MF, Yuste JR, Gándara E, et al. COVID-19 retinal microangiopathy as an in vivo biomarker of systemic vascular disease? J Intern Med. 2021;289(1):116–20. https://doi.org/10.1111/joim.13156.

    Article  CAS  PubMed  Google Scholar 

  16. Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Progress Retinal Eye Res. 2013;34:19–48. https://doi.org/10.1016/j.preteyeres.2013.02.001.

    Article  CAS  Google Scholar 

  17. Reglero-Real N, Colom B, Bodkin JV, Nourshargh S. Endothelial cell junctional adhesion molecules: role and regulation of expression in inflammation. ArteriosclerThrombVasc Biol. 2016;36(10):2048–57. https://doi.org/10.1161/ATVBAHA.116.307610.

    Article  CAS  Google Scholar 

  18. Dong R, Pan S, Peng Z, Zhang Y, Yang J. mTM-align: a server for fast protein structure database search and multiple protein structure alignment. Nucleic Acids Res. 2018;46(W1):W380–6. https://doi.org/10.1093/nar/gky430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. **rui Xu, Zhang Yang. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics. 2010;26(7):889–95.

    Article  Google Scholar 

  20. Zhang Y, Skolnick J. TM-align: A protein structure alignment algorithm based on TM-score. Nucleic Acids Res. 2005;33:2302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S. CABS-dock web server for the flexible docking of peptides to proteinswithout prior knowledge of the binding site. Nucleic Acids Res. 2015;43(W1):W419–24. https://doi.org/10.1093/nar/gkv456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blaszczyk M, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S. Protein–peptide docking using CABS-dock and contact information. Briefings Bioinformatics. 2019;20(6):2299–305. https://doi.org/10.1093/bib/bby080.

    Article  CAS  PubMed  Google Scholar 

  23. Kulkarni R, Behboudi S, Sharif S. Insights into the role of Toll-like receptors in modulation of T cell responses. Cell Tissue Res. 2011;343(1):141–52. https://doi.org/10.1007/s00441-010-1017-1.

    Article  CAS  PubMed  Google Scholar 

  24. Rego N, Koes D. 3Dmol.js: molecular visualization withWebGL. Bioinformatics. 2014;31:1322–4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hanson RM, Prilusky J, Renjian Z, Nakane T, Sussman JL. JSmol and the next-generation web-based representation of 3D molecular structure as applied toproteopedia. Isr J Chem. 2013;53:207–16.

    Article  CAS  Google Scholar 

  26. Verdecchia P, Cavallini C, Spanevello A, Angeli F. COVID-19: ACE2 centric infective disease? Hypertension. 2020;76(2):294–9.

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi Y, Moriki T, Igari A, Matsubara Y, Ohnishi T, Hosokawa K, Murata M. Studies of a microchip flowchamber system to characterize whole blood thrombogenicity in healthy individuals. Thromb Res. 2013;132:263–70.

    Article  CAS  PubMed  Google Scholar 

  28. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020;383(2):120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation. 2020;141:1739–41. https://doi.org/10.1161/CIRCULATIONAHA.120.047419.

    Article  CAS  PubMed  Google Scholar 

  30. Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care. 2017;7:117.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217:e20200652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Becker RC. Toward understanding the 2019 Coronavirus and its impact on the heart. J Thromb Thrombolysis. 2020. https://doi.org/10.1007/s11239-020-02107-6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Caligiuri G. CD31 as a therapeutic target in atherosclerosis. Circ Res. 2020;126:1178–89.

    Article  CAS  PubMed  Google Scholar 

  34. Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). CurrOpinHematol. 2016;23(3):253–9. https://doi.org/10.1097/MOH.0000000000000239.

    Article  CAS  Google Scholar 

  35. Zaremba J, Losy J. sPECAM-1 in serum and CSF of acute ischaemic stroke patients. Acta Neurol Scand. 2002;106:292–8.

    Article  CAS  PubMed  Google Scholar 

  36. Losy J, Niezgoda A, Wender M. Increased serum levels of soluble PECAM-1 in multiple sclerosis patients with brain gadolinium-enhancing lesions. J Neuroimmunol. 1999;99:169–72.

    Article  CAS  PubMed  Google Scholar 

  37. Bauer W, Ulke J, Galtung N, et al. Role of cell adhesion molecules for prognosis of disease development of patients with and without COVID-19 in the emergency department. J Infect Dis. 2021;223(8):1497–9. https://doi.org/10.1093/infdis/jiab042.

    Article  CAS  PubMed  Google Scholar 

  38. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J ThrombHaemost. 2020;18:844–7.

    Article  CAS  Google Scholar 

  39. Hooper LC, Chin MS, Detrick B, Hooks JJ. Retinal degeneration in experimental coronavirus retinopathy (ECOR) is associated with increased TNF-alpha, soluble TNFR2 and altered TNF-alpha signaling. J Neuroimmunol. 2005;166(1–2):65–74. https://doi.org/10.1016/j.jneuroim.2005.05.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hooks JJ, Percopo C, Wang Y, Detrick B. Retina and retinal pigment epithelial cell autoantibodies are produced during murine coronavirus retinopathy. J Immunol. 1993;151(6):3381–9.

    Article  CAS  PubMed  Google Scholar 

  41. Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021;184(1):149-168.e17. https://doi.org/10.1016/j.cell.2020.11.025.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu J, Pang J, Ji P, Zhong Z, Li H, Li B, et al. Elevated interleukin-6 is associated with severity of COVID-19: a meta-analysis. J Med Virol. 2020;93(1):35–7. https://doi.org/10.1002/jmv.26085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: a meta-analysis. J Med Virol. 2020;92:2283–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McConnell MJ, Kawaguchi N, Kondo R, et al. Liver injury in COVID-19 and IL-6 trans-signaling-induced endotheliopathy. J Hepatol. 2021;75(3):647–58. https://doi.org/10.1016/j.jhep.2021.04.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kang S, Tanaka T, Inoue H, et al. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci USA. 2020;117(36):22351–6. https://doi.org/10.1073/pnas.2010229117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–30. https://doi.org/10.1080/22221751.2020.1770129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao Y, Qin L, Zhang P, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020;5(13):e139834. https://doi.org/10.1172/jci.insight.139834

  48. Gadient RA, Patterson PH. Leukemia inhibitory factor, Interleukin 6, and other cytokines using the GP130 transducing receptor: roles in inflammation and injury. Stem Cells. 1999;17(3):127–37. https://doi.org/10.1002/stem.170127.[PubMed][CrossRef][GoogleScholar].

    Article  CAS  PubMed  Google Scholar 

  49. McKinstry KK, Strutt TM, Buck A, et al. IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge. J Immunol. 2009;182(12):7353–63. https://doi.org/10.4049/jimmunol.0900657.

    Article  CAS  PubMed  Google Scholar 

  50. Fattori E, Cappelletti M, Costa P, et al. Defective inflammatory response in interleukin 6-deficient mice. J Exp Med. 1994;180(4):1243–50. https://doi.org/10.1084/jem.180.4.1243.

    Article  CAS  PubMed  Google Scholar 

  51. Amarante-Mendes GP, et al. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol. 2018;9:764.

    Article  Google Scholar 

  52. Barrat FJ, Coffman RL. Development of TLR inhibitors for the treatment of autoimmune diseases. Immunol Rev. 2008;223:271–83. https://doi.org/10.1111/j.1600-065x.2008.00630.x.[PubMed][CrossRef][GoogleScholar].

    Article  CAS  PubMed  Google Scholar 

  53. Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M. Toll-like receptors in the pathogenesis of autoimmune diseases. Adv Pharm Bull. 2015;5(1):605–14. https://doi.org/10.15171/apb.2015.082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Afrin LB, Weinstock LB, Molderings GJ. COVID-19 hyperinflammation and post-COVID-19 illness may be rooted in mast cell activation syndrome. Int J Infect Dis. 2020;100:327–32. https://doi.org/10.1016/j.ijid.2020.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khanmohammadi S, Rezaei N. Role of toll-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021;93(5):2735–9. https://doi.org/10.1002/jmv.26826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cavassani KA, Ishii M, Wen H, et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med. 2008;205(11):2609–21. https://doi.org/10.1084/jem.20081370[PMCfreearticle][PubMed][CrossRef][GoogleScholar].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mazaleuskaya L, Veltrop R, Ikpeze N, Martin-Garcia J, Navas-Martin S. Protective role of toll-like receptor 3-induced type I interferon in murine coronavirus infection of macrophages. Viruses. 2012;4(5):901–23. https://doi.org/10.3390/v4050901[PMCfreearticle][PubMed][CrossRef][GoogleScholar].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Totura AL, Whitmore A, Agnihothram S, et al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio. 2015;6:3. https://doi.org/10.1128/mBio.00638-15[PMCfreearticle][PubMed][CrossRef][GoogleScholar].

    Article  Google Scholar 

  59. Mukherjee R, Bhattacharya A, Bojkova D, et al. Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection. J Biol Chem. 2021;297(2):100925. https://doi.org/10.1016/j.jbc.2021.100925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Biswas I, Khan GA. Coagulation disorders in COVID-19: role of toll-like receptors. J Inflamm Res. 2020;13:823–8. https://doi.org/10.2147/JIR.S271768

  61. Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity. Front Immunol. 2012;3:79.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Khan S, Shafiei MS, Longoria C, Schoggins J, Savani RC, Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. eLife. 2021;10:e68563. https://doi.org/10.1101/2021.03.16.435700

  63. Zheng M, Karki R, Williams EP, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol. 2021;22(7):829–38. https://doi.org/10.1038/s41590-021-00937-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: IKK, LK, MK

Acquisition of data: IKK, MK

Analysis and/orinterpretation of data: IKK, MK, LK

Drafting the manuscript: IKK, EOT, LK, MM

Revising the manuscript critically for important intellectual content: IKK, LK, MM, RR

Approval of the version of the manuscript to be published: IKK, EOT, LK, MM, RR, AK, MK

Corresponding author

Correspondence to Işıl Kutlutürk.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key messages

1. This research study evaluated potential immune molecular mimicry between the epitopes on the SARS-CoV19 S protein and retinal vascular endothelial cell proteins.

2. Bioinformatics was used to identify sequence similarities for potential immune response against the SARS-CoV19.

3. Significant protein sequence similarities between SARS-CoV19 and S-protein were found.

4. Retinal vascular endothelial proteins may have a risk of being targets of autoimmune attacks after infection with SARS-CoV19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutlutürk, I., Tokuç, E.Ö., Karabaş, L. et al. How the immune response to the structural proteins of SARS-CoV-2 affects the retinal vascular endothelial cells: an immune thrombotic and/or endotheliopathy process with in silico modeling. Immunol Res 72, 50–71 (2024). https://doi.org/10.1007/s12026-023-09412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-023-09412-1

Keywords

Navigation