Log in

Bone Metabolism in Inflammatory Bowel Disease and Celiac Disease

  • Review Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis is a systemic skeletal disease characterized by low bone mass and microarchitecture deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Several gastrointestinal disorders have been associated with osteoporosis including inflammatory bowel disease and celiac disease. Different factors can explain low bone density and fractures in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briot K, Geusens P, Em Bultink I, Lems WF, Roux C. Inflammatory diseases and bone fragility. Osteoporos Int. 2017;28(12):3301–14.

    CAS  PubMed  Google Scholar 

  2. Oh HJ, Ryu KH, Park BJ, Yoon BH. Osteoporosis and osteoporotic fractures in gastrointestinal disease. J Bone Metab. 2018;25(4):213–7.

    PubMed  PubMed Central  Google Scholar 

  3. Bernstein CN, Benchimol EI, Bitton A, Murthy SK, Nguyen GC, Lee K, et al. The impact of inflammatory bowel disease in Canada 2018: extra-intestinal diseases in IBD. J Can Assoc Gastroenterol. 2019;2(Suppl 1):S73–80.

    PubMed  Google Scholar 

  4. Chedid VG, Kane SV. Bone health in patients with inflammatory bowel diseases. J Clin Densitom. 2019.

  5. Gastroenterology BSo, Lewis N, Scott BB. Guidelines for osteoporosis in inflammatory bowel disease and coeliac disease: British society of Gastroenterology; 2008.

  6. Farraye FA, Melmed GY, Lichtenstein GR, Kane SV. ACG clinical guideline: preventive Care in Inflammatory Bowel Disease. Am J Gastroenterol. 2017;112(2):241–58.

    PubMed  Google Scholar 

  7. Harbord M, Annese V, Vavricka SR, Allez M, Barreiro-de Acosta M, Boberg KM, et al. The first European evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 2016;10(3):239–54.

    PubMed  Google Scholar 

  8. Adriani A, Pantaleoni S, Luchino M, Ribaldone DG, Reggiani S, Sapone N, et al. Osteopenia and osteoporosis in patients with new diagnosis of inflammatory bowel disease. Panminerva Med. 2014;56(2):145–9.

    CAS  PubMed  Google Scholar 

  9. Szafors P, Che H, Barnetche T, Morel J, Gaujoux-Viala C, Combe B, et al. Risk of fracture and low bone mineral density in adults with inflammatory bowel diseases. A systematic literature review with meta-analysis. Osteoporos Int. 2018;29(11):2389–97.

    CAS  PubMed  Google Scholar 

  10. Ali T, Lam D, Bronze MS, Humphrey MB. Osteoporosis in inflammatory bowel disease. Am J Med. 2009;122(7):599–604.

    PubMed  PubMed Central  Google Scholar 

  11. Schule S, Rossel JB, Frey D, Biedermann L, Scharl M, Zeitz J, et al. Prediction of low bone mineral density in patients with inflammatory bowel diseases. United European Gastroenterol J. 2016;4(5):669–76.

    PubMed  PubMed Central  Google Scholar 

  12. Ghosh S, Cowen S, Hannan WJ, Ferguson A. Low bone mineral density in Crohn's disease, but not in ulcerative colitis, at diagnosis. Gastroenterology. 1994;107(4):1031–9.

    CAS  PubMed  Google Scholar 

  13. Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN. The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med. 2000;133(10):795–9.

    CAS  PubMed  Google Scholar 

  14. Card T, West J, Hubbard R, Logan RF. Hip fractures in patients with inflammatory bowel disease and their relationship to corticosteroid use: a population based cohort study. Gut. 2004;53(2):251–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. van Staa TP, Cooper C, Brusse LS, Leufkens H, Javaid MK, Arden NK. Inflammatory bowel disease and the risk of fracture. Gastroenterology. 2003;125:15917.

    Google Scholar 

  16. Loftus EV Jr, Crowson CS, Sandborn WJ, Tremaine WJ, O'Fallon WM, Melton LJ 3rd. Long-term fracture risk in patients with Crohn's disease: a population-based study in Olmsted County, Minnesota. Gastroenterology. 2002;123(2):468–75.

    PubMed  Google Scholar 

  17. Vestergaard P. Prevalence and pathogenesis of osteoporosis in patients with inflammatory bowel disease. Minerva Med. 2004;95(6):469–80.

    CAS  PubMed  Google Scholar 

  18. Ludvigsson JF, Mahl M, Sachs MC, Bjork J, Michaelsson K, Ekbom A, et al. Fracture risk in patients with inflammatory bowel disease: a Nationwide population-based cohort study from 1964 to 2014. Am J Gastroenterol. 2019;114(2):291–304.

    PubMed  Google Scholar 

  19. Even Dar R, Mazor Y, Karban A, Ish-Shalom S, Segal E. Risk factors for low bone density in inflammatory bowel disease: use of glucocorticoids, low body mass index, and smoking. Dig Dis. 2019;37(4):284–90.

    PubMed  Google Scholar 

  20. van Hogezand RA, Hamdy NA. Skeletal morbidity in inflammatory bowel disease. Scand J Gastroenterol Suppl. 2006:59–64.

  21. Gupta S, Wu X, Moore T, Shen B. Frequency, risk factors, and adverse sequelae of bone loss in patients with ostomy for inflammatory bowel diseases. Inflamm Bowel Dis. 2014;20(2):259–64.

    PubMed  Google Scholar 

  22. Ezzat Y, Hamdy K. The frequency of low bone mineral density and its associated risk factors in patients with inflammatory bowel diseases. Int J Rheum Dis. 2010;13(3):259–65.

    PubMed  Google Scholar 

  23. Naito T, Yokoyama N, Kakuta Y, Ueno K, Kawai Y, Onodera M, et al. Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. J Gastroenterol Hepatol. 2018;33(11):1873–81.

    CAS  PubMed  Google Scholar 

  24. Adamopoulos IE. Inflammation in bone physiology and pathology. Curr Opin Rheumatol. 2018;30(1):59–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tilg H, Moschen AR, Kaser A, Pines A, Dotan I. Gut, inflammation and osteoporosis: basic and clinical concepts. Gut. 2008;57(5):684–94.

    CAS  PubMed  Google Scholar 

  26. Schulte CM, Dignass AU, Goebell H, Roher HD, Schulte KM. Genetic factors determine extent of bone loss in inflammatory bowel disease. Gastroenterology. 2000;119(4):909–20.

    CAS  PubMed  Google Scholar 

  27. Cleynen I, Gonzalez JR, Figueroa C, Franke A, McGovern D, Bortlik M, et al. Genetic factors conferring an increased susceptibility to develop Crohn's disease also influence disease phenotype: results from the IBDchip European project. Gut. 2013;62(11):1556–65.

    CAS  PubMed  Google Scholar 

  28. Brinar M, Vermeire S, Cleynen I, Lemmens B, Sagaert X, Henckaerts L, et al. Genetic variants in autophagy-related genes and granuloma formation in a cohort of surgically treated Crohn's disease patients. J Crohns Colitis. 2012;6(1):43–50.

    PubMed  Google Scholar 

  29. Schulte C, Goebell H, Roher HD, Schulte KM. Genetic determinants of IL-6 expression levels do not influence bone loss in inflammatory bowel disease. Dig Dis Sci. 2001;46(11):2521–8.

    CAS  PubMed  Google Scholar 

  30. Krela-Kazmierczak I, Kaczmarek-Rys M, Szymczak A, Michalak M, Skrzypczak-Zielinska M, Drweska-Matelska N, et al. Bone metabolism and the c.-223C > T polymorphism in the 5'UTR region of the Osteoprotegerin gene in patients with inflammatory bowel disease. Calcif Tissue Int. 2016;99(6):616–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. 2001;411(6837):599–603.

    CAS  PubMed  Google Scholar 

  32. Szymczak-Tomczak A, Krela-Kazmierczak I, Kaczmarek-Rys M, Hryhorowicz S, Stawczyk-Eder K, Szalata M, et al. Vitamin D receptor (VDR) TaqI polymorphism, vitamin D and bone mineral density in patients with inflammatory bowel diseases. Adv Clin Exp Med. 2019;28:975–80.

    Google Scholar 

  33. Robinson RJ, Iqbal SJ, Al-Azzawi F, Abrams K, Mayberry JF. Sex hormone status and bone metabolism in men with Crohn's disease. Aliment Pharmacol Ther. 1998;12(1):21–5.

    CAS  PubMed  Google Scholar 

  34. Miznerova E, Hlavaty T, Koller T, Toth J, Holociova K, Huorka M, et al. The prevalence and risk factors for osteoporosis in patients with inflammatory bowel disease. Bratisl Lek Listy. 2013;114(8):439–45.

    CAS  PubMed  Google Scholar 

  35. Lee S, Metcalfe A, Raman M, Leung Y, Aghajafari F, Letourneau N, et al. Pregnant women with inflammatory bowel disease are at increased risk of vitamin D insufficiency: a cross-sectional study. J Crohns Colitis. 2018;12(6):702–9.

    PubMed  PubMed Central  Google Scholar 

  36. Gilman J, Shanahan F, Cashman KD. Determinants of vitamin D status in adult Crohn's disease patients, with particular emphasis on supplemental vitamin D use. Eur J Clin Nutr. 2006;60(7):889–96.

    CAS  PubMed  Google Scholar 

  37. Nielsen OH, Rejnmark L, Moss AC. Role of vitamin D in the natural history of inflammatory bowel disease. J Crohns Colitis. 2018;12(6):742–52.

    PubMed  Google Scholar 

  38. Limketkai BN, Mullin GE, Limsui D, Parian AM. Role of vitamin D in inflammatory bowel disease. Nutr Clin Pract. 2017;32(3):337–45.

    CAS  PubMed  Google Scholar 

  39. Ulitsky A, Ananthakrishnan AN, Naik A, Skaros S, Zadvornova Y, Binion DG, et al. Vitamin D deficiency in patients with inflammatory bowel disease: association with disease activity and quality of life. JPEN J Parenter Enteral Nutr. 2011;35(3):308–16.

    CAS  PubMed  Google Scholar 

  40. Rodriguez-Bores L, Barahona-Garrido J, Yamamoto-Furusho JK. Basic and clinical aspects of osteoporosis in inflammatory bowel disease. World J Gastroenterol. 2007;13(46):6156–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Buckley L, Humphrey MB. Glucocorticoid-induced osteoporosis. N Engl J Med. 2018;379(26):2547–56.

    PubMed  Google Scholar 

  42. Sylvester FA. Inflammatory bowel disease: effects on bone and mechanisms. Adv Exp Med Biol. 2017;1033:133–50.

    CAS  PubMed  Google Scholar 

  43. Maldonado-Perez MB, Castro-Laria L, Caunedo-Alvarez A, Montoya-Garcia MJ, Giner-Garcia M, Arguelles-Arias F, et al. Does the antitumor necrosis factor-alpha therapy decrease the vertebral fractures occurrence in inflammatory bowel disease? J Clin Densitom. 2019;22(2):195–202.

    CAS  PubMed  Google Scholar 

  44. Castro B, Rivero M, Crespo J, Riancho JA, Valero C. Influence of anti-TNF therapy on bone metabolism in patients with inflammatory bowel disease. Eur J Intern Med. 2017;39:e33–e4.

    CAS  PubMed  Google Scholar 

  45. Hakimian S, Kheder J, Arum S, Cave DR, Hyatt B. Re-evaluating osteoporosis and fracture risk in Crohn's disease patients in the era of TNF-alpha inhibitors. Scand J Gastroenterol. 2018;53(2):168–72.

    CAS  PubMed  Google Scholar 

  46. Veerappan SG, O'Morain CA, Daly JS, Ryan BM. Review article: the effects of antitumour necrosis factor-alpha on bone metabolism in inflammatory bowel disease. Aliment Pharmacol Ther. 2011;33(12):1261–72.

    CAS  PubMed  Google Scholar 

  47. Franchimont N, Putzeys V, Collette J, Vermeire S, Rutgeerts P, De Vos M, et al. Rapid improvement of bone metabolism after infliximab treatment in Crohn's disease. Aliment Pharmacol Ther. 2004;20(6):607–14.

    CAS  PubMed  Google Scholar 

  48. Veerappan SG, Healy M, Walsh B, O'Morain CA, Daly JS, Ryan BM. A 1-year prospective study of the effect of infliximab on bone metabolism in inflammatory bowel disease patients. Eur J Gastroenterol Hepatol. 2016;28(11):1335–44.

    CAS  PubMed  Google Scholar 

  49. Veerappan SG, Healy M, Walsh BJ, O'Morain CA, Daly JS, Ryan BM. Adalimumab therapy has a beneficial effect on bone metabolism in patients with Crohn's disease. Dig Dis Sci. 2015;60(7):2119–29.

    CAS  PubMed  Google Scholar 

  50. Augustine MV, Leonard MB, Thayu M, Baldassano RN, de Boer IH, Shults J, et al. Changes in vitamin D-related mineral metabolism after induction with anti-tumor necrosis factor-alpha therapy in Crohn's disease. J Clin Endocrinol Metab. 2014;99(6):E991–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Melek J, Sakuraba A. Efficacy and safety of medical therapy for low bone mineral density in patients with inflammatory bowel disease: a meta-analysis and systematic review. Clin Gastroenterol Hepatol. 2014;12:32–44 e5.

    PubMed  Google Scholar 

  52. Yao L, Wang H, Dong W, Liu Z, Mao H. Efficacy and safety of bisphosphonates in management of low bone density in inflammatory bowel disease: A meta-analysis. Medicine (Baltimore). 2017;96:e5861.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu Y, Chen X, Chen X, Zhang S, Jiang T, Chang J, et al. Bone loss prevention of bisphosphonates in patients with inflammatory bowel disease: a systematic review and meta-analysis. Can J Gastroenterol Hepatol. 2017;2017:2736547.

    PubMed  PubMed Central  Google Scholar 

  54. Schule S, Rossel JB, Frey D, Biedermann L, Scharl M, Zeitz J, et al. Widely differing screening and treatment practice for osteoporosis in patients with inflammatory bowel diseases in the Swiss IBD cohort study. Medicine (Baltimore). 2017;96:e6788.

    PubMed  PubMed Central  Google Scholar 

  55. Bakker SF, Dik VK, Witte BI, Lips P, Roos JC, Van Bodegraven AA. Increase in bone mineral density in strictly treated Crohn's disease patients with concomitant calcium and vitamin D supplementation. J Crohns Colitis. 2013;7(5):377–84.

    PubMed  Google Scholar 

  56. Casals-Seoane F, Chaparro M, Mate J, Gisbert JP. Clinical course of bone metabolism disorders in patients with inflammatory bowel disease: a 5-year prospective study. Inflamm Bowel Dis. 2016;22(8):1929–36.

    PubMed  Google Scholar 

  57. Piodi LP, Poloni A, Ulivieri FM. Managing osteoporosis in ulcerative colitis: something new? World J Gastroenterol. 2014;20(39):14087–98.

    PubMed  PubMed Central  Google Scholar 

  58. Meyer D, Stavropolous S, Diamond B, Shane E, Green PH. Osteoporosis in a north american adult population with celiac disease. Am J Gastroenterol. 2001;96:1129.

    Google Scholar 

  59. Ganji R, Moghbeli M, Sadeghi R, Bayat G, Ganji A. Prevalence of osteoporosis and osteopenia in men and premenopausal women with celiac disease: a systematic review. Nutr J. 2019;18:9.

    PubMed  PubMed Central  Google Scholar 

  60. Walker MD, Williams J. Lewis SK. Lebwohl B, Green PHR. Measurement of Forearm Bone Density by Dual Energy X-Ray Absorptiometry Increases the Prevalence of Osteoporosis in Men With Celiac Disease. Clin Gastroenterol Hepatol: Bai JC; 2019.

    Google Scholar 

  61. Vasquez H, Mazure R, Gonzalez D, Flores D, Pedreira S, Niveloni S, et al. Risk of fractures in celiac disease patients: a cross-sectional, case-control study. Am J Gastroenterol. 2000;95(1):183–9.

    CAS  PubMed  Google Scholar 

  62. Kalayci AG, Kansu A, Girgin N, Kucuk O, Aras G. Bone mineral density and importance of a gluten-free diet in patients with celiac disease in childhood. Pediatrics. 2001;108:E89.

    CAS  PubMed  Google Scholar 

  63. Legroux-Gerot I, Leloire O, Blanckaert F, Tonnel F, Grardel B, Ducrocq JL, et al. Screening for celiac disease in patients with osteoporosis. Joint Bone Spine. 2009;76(2):162–5.

    PubMed  Google Scholar 

  64. Al-Toma A, Volta U, Auricchio R, Castillejo G, Sanders DS, Cellier C, et al. European Society for the Study of coeliac disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol J. 2019;7(5):583–613.

    PubMed  PubMed Central  Google Scholar 

  65. Laszkowska M, Mahadev S, Sundstrom J, Lebwohl B, Green PHR, Michaelsson K, et al. Systematic review with meta-analysis: the prevalence of coeliac disease in patients with osteoporosis. Aliment Pharmacol Ther. 2018;48(6):590–7.

    CAS  PubMed  Google Scholar 

  66. Galli G, Lahner E, Conti L, Esposito G, Sacchi MC, Annibale B. Risk factors associated with osteoporosis in a cohort of prospectively diagnosed adult coeliac patients. United European Gastroenterol J. 2018;6(8):1161–8.

    PubMed  PubMed Central  Google Scholar 

  67. Pritchard L, Wilson S, Griffin J, Pearce G, Murray IA, Lewis S. Prevalence of reduced bone mineral density in adults with coeliac disease - are we missing opportunities for detection in patients below 50 years of age? Scand J Gastroenterol. 2018;53(12):1433–6.

    CAS  PubMed  Google Scholar 

  68. Kemppainen T, Kroger H, Janatuinen E, Arnala I, Kosma VM, Pikkarainen P, et al. Osteoporosis in adult patients with celiac disease. Bone. 1999;24(3):249–55.

    CAS  PubMed  Google Scholar 

  69. Garcia-Manzanares A, Tenias JM, Lucendo AJ. Bone mineral density directly correlates with duodenal marsh stage in newly diagnosed adult celiac patients. Scand J Gastroenterol. 2012;47(8-9):927–36.

    PubMed  Google Scholar 

  70. Kotze LM, Skare T, Vinholi A, Jurkonis L, Nisihara R. Impact of a gluten-free diet on bone mineral density in celiac patients. Rev Esp Enferm Dig. 2016;108(2):84–8.

    PubMed  Google Scholar 

  71. Pantaleoni S, Luchino M, Adriani A, Pellicano R, Stradella D, Ribaldone DG, et al. Bone mineral density at diagnosis of celiac disease and after 1 year of gluten-free diet. ScientificWorldJournal. 2014;2014:173082.

    PubMed  PubMed Central  Google Scholar 

  72. Sategna-Guidetti C, Grosso SB, Grosso S, Mengozzi G, Aimo G, Zaccaria T, et al. The effects of 1-year gluten withdrawal on bone mass, bone metabolism and nutritional status in newly-diagnosed adult coeliac disease patients. Aliment Pharmacol Ther. 2000;14(1):35–43.

    CAS  PubMed  Google Scholar 

  73. Kemppainen T, Kroger H, Janatuinen E, Arnala I, Lamberg-Allardt C, Karkkainen M, et al. Bone recovery after a gluten-free diet: a 5-year follow-up study. Bone. 1999;25(3):355–60.

    CAS  PubMed  Google Scholar 

  74. Haere P. Hoie O. Haugeberg G. No major reduction in bone mineral density after long-term treatment of patients with Celiac Disease. Eur J Intern Med: Lundin KEA; 2019.

    Google Scholar 

  75. Scott EM, Gaywood I, Scott BB. Guidelines for osteoporosis in coeliac disease and inflammatory bowel disease. British Society of Gastroenterology. Gut. 2000;46 Suppl 1:i1–8.

    Google Scholar 

  76. Singh P, Garber JJ. Implementation and adherence to osteoporosis screening guidelines among coeliac disease patients. Dig Liver Dis. 2016;48(12):1451–6.

    PubMed  Google Scholar 

  77. Ludvigsson JF, Michaelsson K, Ekbom A, Montgomery SM. Coeliac disease and the risk of fractures - a general population-based cohort study. Aliment Pharmacol Ther. 2007;25(3):273–85.

    CAS  PubMed  Google Scholar 

  78. Heikkila K, Pearce J, Maki M, Kaukinen K. Celiac disease and bone fractures: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(1):25–34.

    CAS  PubMed  Google Scholar 

  79. Heikkila K, Heliovaara M, Impivaara O, Kroger H, Knekt P, Rissanen H, et al. Celiac disease autoimmunity and hip fracture risk: findings from a prospective cohort study. J Bone Miner Res. 2015;30(4):630–6.

    PubMed  Google Scholar 

  80. Vestergaard P, Mosekilde L. Fracture risk in patients with celiac disease, Crohn's disease, and ulcerative colitis: a nationwide follow-up study of 16,416 patients in Denmark. Am J Epidemiol. 2002;156(1):1–10.

    PubMed  Google Scholar 

  81. Canova C, Pitter G, Zanier L, Simonato L, Michaelsson K, Ludvigsson JF. Risk of fractures in youths with celiac disease-a population-based study. J Pediatr. 2018;198:117–20.

    PubMed  Google Scholar 

  82. Zanchetta MB, Longobardi V, Bai JC. Bone and celiac disease. Curr Osteoporos Rep. 2016;14(2):43–8.

    PubMed  Google Scholar 

  83. Fasano A, Catassi C. Clinical practice. Celiac disease N Engl J Med. 2012;367(25):2419–26.

    CAS  PubMed  Google Scholar 

  84. Sollid LM, Thorsby E. HLA susceptibility genes in celiac disease: genetic map** and role in pathogenesis. Gastroenterology. 1993;105(3):910–22.

    CAS  PubMed  Google Scholar 

  85. Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16:823–36 e2.

    PubMed  Google Scholar 

  86. Singh P, Arora S, Singh A, Strand TA, Makharia GK. Prevalence of celiac disease in Asia: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2016;31(6):1095–101.

    PubMed  Google Scholar 

  87. Gatti S, Lionetti E. Balanzoni L. Galeazzi T, Gesuita R, et al. Increased Prevalence of Celiac Disease in School-age Children in Italy. Clin Gastroenterol Hepatol: Verma AK; 2019.

    Google Scholar 

  88. Volta U, Caio G, Stanghellini V, De Giorgio R. The changing clinical profile of celiac disease: a 15-year experience (1998-2012) in an Italian referral center. BMC Gastroenterol. 2014;14:194.

    PubMed  PubMed Central  Google Scholar 

  89. Volta U, Caio G, Boschetti E, Giancola F, Rhoden KJ, Ruggeri E, et al. Seronegative celiac disease: shedding light on an obscure clinical entity. Dig Liver Dis. 2016;48(9):1018–22.

    PubMed  Google Scholar 

  90. Caio G, Volta U. Coeliac disease: changing diagnostic criteria? Gastroenterol Hepatol Bed Bench. 2012;5(3):119–22.

    PubMed  PubMed Central  Google Scholar 

  91. Riestra S, Fernandez E, Rodrigo L, Garcia S, Ocio G. Prevalence of coeliac disease in the general population of northern Spain. Strategies of serologic screening. Scand J Gastroenterol. 2000;35(4):398–402.

    CAS  PubMed  Google Scholar 

  92. Punales M, Bastos MD, Ramos ARL, Pinto RB, Ott EA, Provenzi V, et al. Prevalence of celiac disease in a large cohort of young patients with type 1 diabetes. Pediatr Diabetes. 2019;20(4):414–20.

    CAS  PubMed  Google Scholar 

  93. Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12:43.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bronner F, Pansu D. Nutritional aspects of calcium absorption. J Nutr. 1999;129(1):9–12.

    CAS  PubMed  Google Scholar 

  95. Bronner F. Recent developments in intestinal calcium absorption. Nutr Rev. 2009;67(2):109–13.

    PubMed  Google Scholar 

  96. Khundmiri SJ, Murray RD, Lederer E. PTH and vitamin D. Compr Physiol. 2016;6(2):561–601.

    PubMed  Google Scholar 

  97. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10(7):1257–72.

    CAS  PubMed  Google Scholar 

  98. Riancho JA, Delgado-Calle J. [Osteoblast-osteoclast interaction mechanisms]. Reumatol Clin. 2011;7 Suppl 2:S1–4.

  99. Dickson BC, Streutker CJ, Chetty R. Coeliac disease: an update for pathologists. J Clin Pathol. 2006;59(10):1008–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lewis SK, Semrad CE. Capsule endoscopy and Enteroscopy in celiac disease. Gastroenterol Clin N Am. 2019;48(1):73–84.

    Google Scholar 

  101. Bul V, Sleesman B, Boulay B. Celiac disease presenting as profound diarrhea and weight loss - a celiac crisis. Am J Case Rep. 2016;17:559–61.

    PubMed  PubMed Central  Google Scholar 

  102. Bledsoe AC, King KS, Larson JJ, Snyder M, Absah I, Choung RS, et al. Micronutrient deficiencies are common in contemporary celiac disease despite lack of overt Malabsorption symptoms. Mayo Clin Proc. 2019;94(7):1253–60.

    CAS  PubMed  Google Scholar 

  103. Ojetti V, Gabrielli M, Migneco A, Lauritano C, Zocco MA, Scarpellini E, et al. Regression of lactose malabsorption in coeliac patients after receiving a gluten-free diet. Scand J Gastroenterol. 2008;43(2):174–7.

    CAS  PubMed  Google Scholar 

  104. Kruger MC, Horrobin DF. Calcium metabolism, osteoporosis and essential fatty acids: a review. Prog Lipid Res. 1997;36(2-3):131–51.

    CAS  PubMed  Google Scholar 

  105. Nair R, Maseeh A. Vitamin D: The "sunshine" vitamin. J Pharmacol Pharmacother 2012;3:118–126, 2.

  106. Nakamichi Y, Takahashi N. Current topics on vitamin D. the role of active forms of vitamin D in regulation of bone remodeling. Clin Calcium. 2015;25(3):395–402.

    CAS  PubMed  Google Scholar 

  107. Ludvigsson JF, Kampe O, Lebwohl B, Green PH, Silverberg SJ, Ekbom A. Primary hyperparathyroidism and celiac disease: a population-based cohort study. J Clin Endocrinol Metab. 2012;97(3):897–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Valdimarsson T, Toss G, Lofman O, Strom M. Three years' follow-up of bone density in adult coeliac disease: significance of secondary hyperparathyroidism. Scand J Gastroenterol. 2000;35(3):274–80.

    CAS  PubMed  Google Scholar 

  109. Keaveny AP, Freaney R, McKenna MJ, Masterson J, O'Donoghue DP. Bone remodeling indices and secondary hyperparathyroidism in celiac disease. Am J Gastroenterol. 1996;91(6):1226–31.

    CAS  PubMed  Google Scholar 

  110. Kavak US, Yuce A, Kocak N, Demir H, Saltik IN, Gurakan F, et al. Bone mineral density in children with untreated and treated celiac disease. J Pediatr Gastroenterol Nutr. 2003;37(4):434–6.

    CAS  PubMed  Google Scholar 

  111. Heydari F, Rostami-Nejad M, Moheb-Alian A, Mollahoseini MH, Rostami K, Pourhoseingholi MA, et al. Serum cytokines profile in treated celiac disease compared with non-celiac gluten sensitivity and control: a marker for differentiation. J Gastrointestin Liver Dis. 2018;27(3):241–7.

    PubMed  Google Scholar 

  112. Manavalan JS, Hernandez L, Shah JG, Konikkara J, Naiyer AJ, Lee AR, et al. Serum cytokine elevations in celiac disease: association with disease presentation. Hum Immunol. 2010;71(1):50–7.

    CAS  PubMed  Google Scholar 

  113. Okabe I, Kikuchi T, Mogi M, Takeda H, Aino M, Kamiya Y, et al. IL-15 and RANKL play a synergistically important role in Osteoclastogenesis. J Cell Biochem. 2017;118(4):739–47.

    CAS  PubMed  Google Scholar 

  114. Vorobjova T, Tagoma A, Oras A, Alnek K, Kisand K, Talja I, et al. Celiac disease in children, particularly with accompanying type 1 diabetes, is characterized by substantial changes in the blood cytokine balance. Which May Reflect Inflammatory Processes in the Small Intestinal Mucosa J Immunol Res. 2019;2019:6179243.

    PubMed  Google Scholar 

  115. Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, et al. Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med. 2005;202(5):589–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.

    CAS  PubMed  Google Scholar 

  117. Soysa NS, Alles N. NF-kappaB functions in osteoclasts. Biochem Biophys Res Commun. 2009;378(1):1–5.

    CAS  PubMed  Google Scholar 

  118. Kim JH, ** HM, Kim K, Song I, Youn BU, Matsuo K, et al. The mechanism of osteoclast differentiation induced by IL-1. J Immunol. 2009;183:1862–70.

    CAS  PubMed  Google Scholar 

  119. Taranta A, Fortunati D, Longo M, Rucci N, Iacomino E, Aliberti F, et al. Imbalance of osteoclastogenesis-regulating factors in patients with celiac disease. J Bone Miner Res. 2004;19(7):1112–21.

    CAS  PubMed  Google Scholar 

  120. Fiore CE, Pennisi P, Ferro G, **menes B, Privitelli L, Mangiafico RA, et al. Altered osteoprotegerin/RANKL ratio and low bone mineral density in celiac patients on long-term treatment with gluten-free diet. Horm Metab Res. 2006;38(6):417–22.

    CAS  PubMed  Google Scholar 

  121. Di Stefano M, Bergonzi M, Benedetti I, De Amici M, Torre C, Brondino N, et al. Alterations of inflammatory and matrix production indices in celiac disease with low bone mass on long-term gluten-free diet. J Clin Gastroenterol. 2019;53:e221–e6.

    PubMed  Google Scholar 

  122. Larussa T, Suraci E, Imeneo M, Marasco R, Luzza F. Normal bone mineral density associates with duodenal mucosa healing in adult patients with celiac disease on a gluten-free diet. Nutrients. 2017;9.

    PubMed Central  Google Scholar 

  123. Zanchetta MB, Longobardi V, Costa F, Longarini G, Mazure RM, Moreno ML, et al. Impaired bone microarchitecture improves after one year on gluten-free diet: a prospective longitudinal HRpQCT study in women with celiac disease. J Bone Miner Res. 2017;32(1):135–42.

    CAS  PubMed  Google Scholar 

  124. Mautalen C, Gonzalez D, Mazure R, Vazquez H, Lorenzetti MP, Maurino E, et al. Effect of treatment on bone mass, mineral metabolism, and body composition in untreated celiac disease patients. Am J Gastroenterol. 1997;92(2):313–8.

    CAS  PubMed  Google Scholar 

  125. Muzzo SB, R. Burgueño, M. Ríos, G. Bergenfreid, C. Chavez, E. Leiva,L. Effect of calcium and vitamin D supplementation on bone mineral density of celiac children,. Nutr Res 2000;20:1241–1247.

    CAS  Google Scholar 

  126. Pazianas M, Butcher GP, Subhani JM, Finch PJ, Ang L, Collins C, et al. Calcium absorption and bone mineral density in celiacs after long term treatment with gluten-free diet and adequate calcium intake. Osteoporos Int. 2005;16(1):56–63.

    CAS  PubMed  Google Scholar 

  127. Passananti V, Santonicola A, Bucci C, Andreozzi P, Ranaudo A, Di Giacomo DV, et al. Bone mass in women with celiac disease: role of exercise and gluten-free diet. Dig Liver Dis. 2012;44(5):379–83.

    PubMed  Google Scholar 

  128. Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011:CD000333.

  129. Kumar M, Rastogi A, Bhadada SK, Bhansali A, Vaiphei K, Kochhar R. Effect of zoledronic acid on bone mineral density in patients of celiac disease: a prospective, randomized, pilot study. Indian J Med Res. 2013;138(6):882–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Valero.

Ethics declarations

Conflict of Interest

Carmen Valero and Mª José García declare that they have no conflicts of interest.

Informed Consent

It is a review article in human’s studies Informed consent, It is not necessary, It is a review article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valero, C., García, M. Bone Metabolism in Inflammatory Bowel Disease and Celiac Disease. Clinic Rev Bone Miner Metab 17, 152–159 (2019). https://doi.org/10.1007/s12018-019-09269-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-019-09269-9

Keywords

Navigation