Log in

During Sepsis and COVID-19, the Pro-Inflammatory and Anti-Inflammatory Responses Are Concomitant

  • Review
  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The most severe forms of COVID-19 share many features with bacterial sepsis and have thus been considered to be a viral sepsis. Innate immunity and inflammation are closely linked. While the immune response aims to get rid of the infectious agent, the pro-inflammatory host response can result in organ injury including acute respiratory distress syndrome. On its side, a compensatory anti-inflammatory response, aimed to dampen the inflammatory reaction, can lead to immunosuppression. Whether these two key events of the host inflammatory response are consecutive or concomitant has been regularly depicted in schemes. Initially proposed from 2001 to 2013 to be two consecutive steps, the concomitant occurrence has been supported since 2013, although it was proposed for the first time in 2001. Despite a consensus was reached, the two consecutive steps were still recently proposed for COVID-19. We discuss why the concomitance view could have been initiated as early as 1995.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, Monneret G, Venet F, Bauer M, Brunkhorst FM, Weis S, Garcia-Salido A, Kox M, Cavaillon JM, Uhle F, Weigand MA, Flohé SB, Wiersinga WJ, Almansa R, de la Fuente A, Martin-Loeches I, Meisel C, Spinetti T, Schefold JC, Cilloniz C, Torres A, Giamarellos-Bourboulis EJ, Ferrer R, Girardis M, Cossarizza A, Netea MG, van der Poll T, Bermejo-Martín JF, Rubio I (2021) The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med 9:622–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adam D (2022) COVID’s true death toll: much higher than official records. Nature 603(7902):562

    Article  CAS  PubMed  Google Scholar 

  3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vincent JL (2021) COVID-19: it’s all about sepsis. Future Microbiol 16:131–133

    Article  CAS  PubMed  Google Scholar 

  5. Karakike E, Giamarellos-Bourboulis EJ, Kyprianou M, Fleischmann-Struzek C, Pletz MW, Netea MG, Reinhart K, Kyriazopoulou E (2021) Coronavirus disease 2019 as cause of viral sepsis: a systematic review and meta-analysis. Crit Care Med 49(12):2042–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herminghaus A, Osuchowski MF (2022) How sepsis parallels and differs from COVID-19. EBioMedicine 86:104355

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carvelli J, Demaria O, Vély F, Batista L, Chouaki Benmansour N, Fares J, Carpentier S, Thibult ML, Morel A, Remark R, André P, Represa A, Piperoglou C; Explore COVID-19 IPH group; Explore COVID-19 Marseille Immunopole group; Cordier PY, Le Dault E, Guervilly C, Simeone P, Gainnier M, Morel Y, Ebbo M, Schleinitz N, Vivier E (2020) Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature 588(7836):146–150

  8. Czermak BJ, Sarma V, Pierson CL, Warner RL, Huber-Lang M, Bless NM, Schmal H, Friedl HP, Ward PA (1999) Protective effects of C5a blockade in sepsis. Nat Med 5(7):788–792

    Article  CAS  PubMed  Google Scholar 

  9. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby R, Jonsson CB, Kanneganti TD (2021) Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184(1):149–168

    Article  CAS  PubMed  Google Scholar 

  10. Doherty GM, Lange JR, Langstein HN, Alexander HR, Buresh CM, Norton JA (1992) Evidence for IFN-gamma as a mediator of the lethality of endotoxin and tumor necrosis factor-alpha. J Immunol 149(5):1666–1670

    Article  CAS  PubMed  Google Scholar 

  11. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, Across Speciality Collaboration HLH, UK, (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395(10229):1033–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mangalmurti N, Hunter CA (2020) Cytokine Storms: Understanding COVID-19. Immunity 53(1):19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sinha P, Matthay MA, Calfee CS (2020) Is a “cytokine storm” relevant to COVID-19? JAMA Intern Med 180(9):1152–1154

    Article  CAS  PubMed  Google Scholar 

  14. Remy KE, Mazer M, Striker DA, Ellebedy AH, Walton AH, Unsinger J, Blood TM, Mudd PA, Yi DJ, Mannion DA, Osborne DF, Martin RS, Anand NJ, Bosanquet JP, Blood J, Drewry AM, Caldwell CC, Turnbull IR, Brakenridge SC, Moldwawer LL, Hotchkiss RS (2020) Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight 5(17):e140329

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P (2020) Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA 324(15):1565–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stolarski AE, Kim J, Zhang Q, Remick DG (2021) Cytokine drizzle-the rationale for abandoning “cytokine storm.” Shock 56(5):667–672

    Article  CAS  PubMed  Google Scholar 

  17. Cavaillon JM, Munoz C, Fitting C, Misset B, Carlet J (1992) Circulating cytokines: the tip of the iceberg? Circ Shock 38(2):145–152

    CAS  PubMed  Google Scholar 

  18. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, **a J, Wei Y, Wu W, **e X, Yin W, Li H, Liu M, **ao Y, Gao H, Guo L, **e J, Wang G, Jiang R, Gao Z, ** Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet 395(10223):497–506

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Z, Ren L, Zhang L, Zhong J, **ao Y, Jia Z, Guo L, Yang J, Wang C, Jiang S, Yang D, Zhang G, Li H, Chen F, Xu Y, Chen M, Gao Z, Yang J, Dong J, Liu B, Zhang X, Wang W, He K, ** Q, Li M, Wang J (2020) Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27(6):883–890.e2

  20. **ong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, Guo D, Hu W, Yang J, Tang Z, Wu H, Lin Y, Zhang M, Zhang Q, Shi M, Liu Y, Zhou Y, Lan K, Chen Y (2020) Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect 9(1):761–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schuurman AR, Reijnders TDY, van Engelen TSR, Léopold V, de Brabander J, van Linge C, Schinkel M, Pereverzeva L, Haak BW, Brands X, Kanglie MMNP, van den Berk IAH, Douma RA, Faber DR, Nanayakkara PWB, Stoker J, Prins JM, Scicluna BP, Wiersinga WJ, van der Poll T (2022) The host response in different aetiologies of community-acquired pneumonia. EBioMedicine 81:104082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Munford RS, Pugin J (2001) Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med 163(2):316–321

    Article  CAS  PubMed  Google Scholar 

  23. Cavaillon JM, Adib-Conquy M, Cloëz-Tayarani I, Fitting C (2001) Immunodepression in sepsis and SIRS assessed by ex vivo cytokine production is not a generalized phenomenon: a review. J Endotoxin Res 7(2):85–93

    CAS  PubMed  Google Scholar 

  24. Cavaillon JM (2002) “Septic plasma”: an immunosuppressive milieu. Am J Respir Crit Care Med 166(11):1417–1418

    Article  PubMed  Google Scholar 

  25. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–1655

    Article  CAS  PubMed  Google Scholar 

  26. Masi P, Hékimian G, Lejeune M, Chommeloux J, Desnos C, Pineton De Chambrun M, Martin-Toutain I, Nieszkowska A, Lebreton G, Bréchot N, Schmidt M, Edouard Luyt C, Combes A, Frere C (2020) Systemic inflammatory response syndrome is a major contributor to COVID-19-associated coagulopathy: insights from a prospective, single-center cohort study. Circulation 142(6):611–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boehme AK, Doyle K, Thakur KT, Roh D, Park S, Agarwal S, Velazquez AG, Egbebike JA, Der Nigoghossian C, Prust ML, Rosenberg J, Brodie D, Fishkoff KN, Hochmann BR, Rabani LE, Yip NH, Panzer O, Claassen J (2022) Disorders of consciousness in hospitalized patients with COVID-19: the role of the systemic inflammatory response syndrome. Neurocrit Care 36(1):89–96

    Article  CAS  PubMed  Google Scholar 

  28. Bone RC, Grodzin CJ, Balk RA (1997) Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 112(1):235–243

    Article  CAS  PubMed  Google Scholar 

  29. Adib-Conquy M, Cavaillon JM (2009) Compensatory anti-inflammatory response syndrome. Thromb Haemost 101(1):36–47

    Article  CAS  PubMed  Google Scholar 

  30. Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA (2001) Post-injury multiple organ failure: the role of the gut. Shock 15(1):1–10

    Article  CAS  PubMed  Google Scholar 

  31. Reddy RC, Chen GH, Tekchandani PK, Standiford TJ (2001) Sepsis-induced immunosuppression: from bad to worse. Immunol Res 24(3):273–287

    Article  CAS  PubMed  Google Scholar 

  32. Nomikos IN, Vamvakopoulos NC (2001) Correlating functional staging to effective treatment of acute surgical illness. Am J Surg 182(3):278–286

    Article  CAS  PubMed  Google Scholar 

  33. Riedemann NC, Guo RF, Ward PA (2003) Novel strategies for the treatment of sepsis. Nat Med 9(5):517–524

    Article  CAS  PubMed  Google Scholar 

  34. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348(2):138–150

    Article  CAS  PubMed  Google Scholar 

  35. Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA (2009) The sepsis seesaw: tilting toward immunosuppression. Nat Med 15(5):496–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Faix JD (2013) Biomarkers of sepsis. Crit Rev Clin Lab Sci 50(1):23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 3(3):260–268

    Article  Google Scholar 

  38. Lenz A, Franklin GA, Cheadle WG (2007) Systemic inflammation after trauma. Injury 38(12):1336–1345

    Article  PubMed  Google Scholar 

  39. Sailhamer EA, Li Y, Smith EJ, Shuja F, Shults C, Liu B, Soupir C, deMoya M, Velmahos G, Alam HB (2008) Acetylation: a novel method for modulation of the immune response following trauma/hemorrhage and inflammatory second hit in animals and humans. Surgery 144(2):204–216

    Article  PubMed  Google Scholar 

  40. Andersson R, Andersson B, Andersson E, Axelsson J, Eckerwall G, Tingstedt B (2007) Acute pancreatitis–from cellular signalling to complicated clinical course. HPB (Oxford) 9(6):414–420

    Article  PubMed  Google Scholar 

  41. van Deuren M, van der Ven-Jongekrijg J, Bartelink AK, van Dalen R, Sauerwein RW, van der Meer JW (1995) Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J Infect Dis 172(2):433–439

    Article  PubMed  Google Scholar 

  42. Lehmann AK, Halstensen A, Sørnes S, Røkke O, Waage A (1995) High levels of interleukin 10 in serum are associated with fatality in meningococcal disease. Infect Immun 63(6):2109–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gómez-Jiménez J, Martín MC, Sauri R, Segura RM, Esteban F, Ruiz JC, Nuvials X, Bóveda JL, Peracaula R, Salgado A (1995) Interleukin-10 and the monocyte/macrophage-induced inflammatory response in septic shock. J Infect Dis 171(2):472–475

    Article  PubMed  Google Scholar 

  44. Cavaillon JM, Adib-Conquy M, Fitting C, Adrie C, Payen D (2003) Cytokine cascade in sepsis. Scand J Infect Dis 35(9):535–544

    Article  CAS  PubMed  Google Scholar 

  45. Cavaillon JM (2001) Pro- versus anti-inflammatory cytokines: myth or reality. Cell Mol Biol (Noisy-le-Grand) 47(4):695–702

  46. Adib-Conquy M, Asehnoune K, Moine P, Cavaillon JM (2001) Long-term-impaired expression of nuclear factor-kappa B and I kappa B alpha in peripheral blood mononuclear cells of trauma patients. J Leukoc Biol 70(1):30–38

    Article  CAS  PubMed  Google Scholar 

  47. Adrie C, Adib-Conquy M, Laurent I, Monchi M, Vinsonneau C, Fitting C, Fraisse F, Dinh-Xuan AT, Carli P, Spaulding C, Dhainaut JF, Cavaillon JM (2002) Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation 106(5):562–568

    Article  PubMed  Google Scholar 

  48. **ao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, Hayden DL, Hennessy L, Moore EE, Minei JP, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Brownstein BH, Mason PH, Baker HV, Finnerty CC, Jeschke MG, López MC, Klein MB, Gamelli RL, Gibran NS, Arnoldo B, Xu W, Zhang Y, Calvano SE, McDonald-Smith GP, Schoenfeld DA, Storey JD, Cobb JP, Warren HS, Moldawer LL, Herndon DN, Lowry SF, Maier RV, Davis RW, Tompkins RG; Inflammation and Host Response to Injury Large-Scale Collaborative Research Program (2011) A genomic storm in critically injured humans. J Exp Med 208(13):2581–2590

    Article  Google Scholar 

  49. Tang BM, Huang SJ, McLean AS (2010) Genome-wide transcription profiling of human sepsis: a systematic review. Crit Care 14(6):R237

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tamayo E, Fernández A, Almansa R, Carrasco E, Heredia M, Lajo C, Goncalves L, Gómez-Herreras JI, de Lejarazu RO, Bermejo-Martin JF (2011) Pro- and anti-inflammatory responses are regulated simultaneously from the first moments of septic shock. Eur Cytokine Netw 22(2):82–87

    Article  CAS  PubMed  Google Scholar 

  51. Osuchowski MF, Welch K, Siddiqui J, Remick DG (2006) Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol 177(3):1967–1974

    Article  CAS  PubMed  Google Scholar 

  52. Kim OY, Monsel A, Bertrand M, Coriat P, Cavaillon JM, Adib-Conquy M (2010) Differential down-regulation of HLA-DR on monocyte subpopulations during systemic inflammation. Crit Care 14(2):R61

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fumeaux T, Pugin J (2002) Role of interleukin-10 in the intracellular sequestration of human leukocyte antigen-DR in monocytes during septic shock. Am J Respir Crit Care Med 166(11):1475–1482

    Article  PubMed  Google Scholar 

  54. Versteeg D, Dol E, Hoefer IE, Flier S, Buhre WF, de Kleijn D, van Dongen EP, Pasterkamp G, de Vries JP (2009) Toll-like receptor 2 and 4 response and expression on monocytes decrease rapidly in patients undergoing arterial surgery and are related to preoperative smoking. Shock 31(1):21–27

    Article  PubMed  Google Scholar 

  55. Kirchhoff C, Biberthaler P, Mutschler WE, Faist E, Jochum M, Zedler S (2009) Early down-regulation of the pro-inflammatory potential of monocytes is correlated to organ dysfunction in patients after severe multiple injury: a cohort study. Crit Care 13(3):R88

    Article  PubMed  PubMed Central  Google Scholar 

  56. Timmermans K, Kox M, Vaneker M, van den Berg M, John A, van Laarhoven A, van der Hoeven H, Scheffer GJ, Pickkers P (2016) Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Med 42(4):551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gomez HG, Gonzalez SM, Londoño JM, Hoyos NA, Niño CD, Leon AL, Velilla PA, Rugeles MT, Jaimes FA (2014) Immunological characterization of compensatory anti-inflammatory response syndrome in patients with severe sepsis: a longitudinal study. Crit Care Med 42(4):771–780

    Article  CAS  PubMed  Google Scholar 

  58. Hotchkiss RS, Monneret G, Payen D (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13(12):862–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Delano MJ, Ward PA (2016) Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J Clin Invest 126(1):23–31

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cao C, Yu M, Chai Y (2019) Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis 10(10):782

    Article  PubMed  PubMed Central  Google Scholar 

  61. van der Slikke EC, An AY, Hancock REW, Bouma HR (2020) Exploring the pathophysiology of post-sepsis syndrome to identify therapeutic opportunities. EBioMedicine 61:103044

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thompson KB, Krispinsky LT, Stark RJ (2019) Late immune consequences of combat trauma: a review of trauma-related immune dysfunction and potential therapies. Mil Med Res 6(1):11

    PubMed  PubMed Central  Google Scholar 

  63. Teuben MPJ, Pfeifer R, Teuber H, De Boer LL, Halvachizadeh S, Shehu A, Pape HC (2020) Lessons learned from the mechanisms of posttraumatic inflammation extrapolated to the inflammatory response in COVID-19: a review. Patient Saf Surg 14:28

    Article  PubMed  PubMed Central  Google Scholar 

  64. Brady J, Horie S, Laffey JG (2020) Role of the adaptive immune response in sepsis. Intensive Care Med Exp 8(Suppl 1):20

    Article  PubMed  PubMed Central  Google Scholar 

  65. Busani S, Roat E, Tosi M, Biagioni E, Coloretti I, Meschiari M, Gelmini R, Brugioni L, De Biasi S, Girardis M (2021) Adjunctive immunotherapy with polyclonal Ig-M enriched immunoglobulins for septic shock: from bench to bedside. The rationale for a personalized treatment protocol. Front Med (Lausanne) 8:616511

  66. Lazarus HM, Pitts K, Wang T, Lee E, Buchbinder E, Dougan M, Armstrong DG, Paine R 3rd, Ragsdale CE, Boyd T, Rock EP, Gale RP (2023) Recombinant GM-CSF for diseases of GM-CSF insufficiency: correcting dysfunctional mononuclear phagocyte disorders. Front Immunol 13:1069444

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mortaz E, Zadian SS, Shahir M, Folkerts G, Garssen J, Mumby S, Adcock IM (2019) Does neutrophil phenotype predict the survival of trauma patients? Front Immunol 10:2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oronsky B, Larson C, Hammond TC, Oronsky A, Kesari S, Lybeck M, Reid TR (2023) Review of persistent post-COVID syndrome (PPCS). Clin Rev Allergy Immunol 64(1):66–74

    Article  CAS  PubMed  Google Scholar 

  69. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, Moldawer LL, Moore FA (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72(6):1491–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I wrote the whole manuscript.

Corresponding author

Correspondence to Jean-Marc Cavaillon.

Ethics declarations

Competing Interests

I declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaillon, JM. During Sepsis and COVID-19, the Pro-Inflammatory and Anti-Inflammatory Responses Are Concomitant. Clinic Rev Allerg Immunol 65, 183–187 (2023). https://doi.org/10.1007/s12016-023-08965-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-023-08965-1

Keywords

Navigation