Log in

Evaluation of the Efficacy of Stem Cells Therapy in the Periodontal Regeneration: A Meta-Analysis and Mendelian Randomization Study

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cell therapy for periodontal defects has shown good promise in preclinical studies. The purpose of this study was to evaluate the impact of stem cell support on the regeneration of both soft and hard tissues in periodontal treatment. PubMed, Cochrane Library, Embase, and Web of Science were searched and patients with periodontal defects who received stem cell therapy were included in this study. The quality of the included articles was assessed using Cochrane’s tool for evaluating bias, and heterogeneity was analyzed using the I2 method. An Mendelian randomization investigation was conducted using abstract data from the IEU public databases obtained through GWAS. Nine articles were included for the meta-analysis. Stem cell therapy effectively rebuilds periodontal tissues in patients with periodontal defects, as evidenced by a reduction in probing depth, clinical attachment level  and bone defect depth . And delta-like homolog 1 is a protective factor against periodontal defects alternative indicator of tooth loosening. The findings of this research endorse the utilization of stem cell treatment for repairing periodontal defects in individuals suffering from periodontitis. It is recommended that additional extensive clinical investigations be carried out to validate the efficacy of stem cell therapy and encourage its widespread adoption.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available in the IEU Open GWAS Project, [http://gwas.mrcieu.ac.uk].

Code Availability

Not applicable.

References

  1. Wu, L., et al. (2022). Global, regional, and national burden of periodontitis from 1990 to 2019: results from the global burden of disease study 2019. Journal of periodontology, 93(10), 1445–1454.

    Article  PubMed  Google Scholar 

  2. Amado, P. P. P., et al. (2020). Oral and fecal microbiome in molar-incisor pattern periodontitis. Frontiers in Cellular and Infection Microbiology, 10, 583761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eberhard, J., et al. (2015). Full-mouth treatment modalities (within 24 hours) for chronic periodontitis in adults. Cochrane Database of Systematic Reviews, 2015(4), Cd004622.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Usher, A. K., & Stockley, R. A. (2013). The link between chronic periodontitis and COPD: a common role for the neutrophil? BMC Medicine, 11, 241.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buset, S. L., et al. (2016). Are periodontal diseases really silent? a systematic review of their effect on quality of life. Journal of clinical Periodontology, 43(4), 333–344.

    Article  PubMed  Google Scholar 

  6. Assunção, M., et al. (2021). Clinical efficacy of subgingivally delivered propolis as an adjuvant to nonsurgical periodontal treatment of periodontitis: a systematic review and meta-analysis. Phytotherapy Research, 35(10), 5584–5595.

    Article  PubMed  Google Scholar 

  7. Cobb, C. M. (2002). Clinical significance of non-surgical periodontal therapy: an evidence-based perspective of scaling and root planing. Journal of Clinical Periodontology, 29(Suppl 2), 6–16.

    PubMed  Google Scholar 

  8. Graziani, F., et al. (2017). Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000, 75(1), 152–188.

    Article  PubMed  Google Scholar 

  9. Badersten, A., Nilvéus, R., & Egelberg, J. (1985). Effect of non-surgical periodontal therapy. VI. localization of sites with probing attachment loss. Journal of Clinical Periodontology, 12(5), 351–9.

    Article  CAS  PubMed  Google Scholar 

  10. Haffajee, A. D., et al. (1997). The effect of SRP on the clinical and microbiological parameters of periodontal diseases. Journal of Clinical Periodontology, 24(5), 324–334.

    Article  CAS  PubMed  Google Scholar 

  11. Bajestan, M. N., et al. (2017). Stem cell therapy for reconstruction of alveolar cleft and trauma defects in adults: a randomized controlled, clinical trial. Clinical Implant Dentistry and Related Research, 19(5), 793–801.

    Article  PubMed  Google Scholar 

  12. Jovic, D., et al. (2022). A brief overview of global trends in MSC-based cell therapy. Stem Cell Reviews and Reports, 18(5), 1525–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, H., et al. (2021). Advances in mesenchymal stem cell conditioned medium-mediated periodontal tissue regeneration. Journal of Translational Medicine, 19(1), 456.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nuñez, J., et al. (2019). Cellular therapy in periodontal regeneration. Periodontol 2000, 79(1), 107–116.

    Article  PubMed  Google Scholar 

  15. Lei, F., et al. (2022). Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta Biomaterialia, 141, 333–343.

    Article  CAS  PubMed  Google Scholar 

  16. Seo, B. M., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429), 149–155.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Y., et al. (2008). Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells, 26(4), 1065–1073.

    Article  PubMed  Google Scholar 

  18. Fawzy El-Sayed, K. M., & Dörfer, C. E. (2016). Gingival mesenchymal stem/progenitor cells: a unique tissue engineering gem. Stem Cells International, 2016, 7154327.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang, B., et al. (2021). Immunomodulation in the treatment of periodontitis: Progress and perspectives. Frontiers in Immunology, 12, 781378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, J., et al. (2021). Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis. Stem Cells, 39(1), 92–102.

    Article  CAS  PubMed  Google Scholar 

  21. Xu, X. Y., et al. (2019). Concise review: periodontal tissue regeneration using stem cells: strategies and translational considerations. Stem Cells Translational Medicine, 8(4), 392–403.

    Article  PubMed  Google Scholar 

  22. Yan, X. Z., et al. (2015). Cell-based approaches in periodontal regeneration: a systematic review and meta-analysis of periodontal defect models in animal experimental work. Tissue Engineering. Part B, Reviews, 21(5), 411–426.

    Article  PubMed  Google Scholar 

  23. Li, Q., et al. (2020). Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Research & Therapy, 11(1), 427.

    Article  CAS  Google Scholar 

  24. Xu, X., et al. (2023). Nanosilicate-functionalized nanofibrous membrane facilitated periodontal regeneration potential by harnessing periodontal ligament cell-mediated osteogenesis and immunomodulation. J Nanobiotechnology, 21(1), 223.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chang, Y. T., Lai, C. C., & Lin, D. J. (2023). Collagen scaffolds laden with human periodontal ligament fibroblasts promote periodontal regeneration in SD rat model. Polymers (Basel), 15(12), 2649.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng, Z., et al. (2022). Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell, 29(11), 1562-1579.e7.

    Article  CAS  PubMed  Google Scholar 

  27. Kikuchi, T., et al. (2017). Human iPS cell-derived dopaminergic neurons function in a primate parkinson’s disease model. Nature, 548(7669), 592–596.

    Article  CAS  PubMed  Google Scholar 

  28. Walker, J. V., et al. (2019). Transit amplifying cells coordinate mouse incisor mesenchymal stem cell activation. Nature Communications, 10(1), 3596.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Larvin, H., et al. (2022). The additive effect of periodontitis with hypertension on risk of systemic disease and mortality. Journal of Periodontology, 93(7), 1024–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Watson, S., et al. (2022). Associations between self-reported periodontal disease and nutrient intakes and nutrient-based dietary patterns in the UK biobank. Journal of Clinical Periodontology, 49(5), 428–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Page, M. J., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906.

    Article  PubMed  Google Scholar 

  32. Higgins, J. P., et al. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sterne, J. A., et al. (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. Bmj, 343, d4002.

    Article  PubMed  Google Scholar 

  34. Abdal-Wahab, M., et al. (2020). Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabony defects (randomized clinical and biochemical trial). Journal of Periodontal Research, 55(3), 441–452.

    Article  CAS  PubMed  Google Scholar 

  35. Dhote, R., et al. (2015). Stem cells cultured on Beta tricalcium phosphate (β-TCP) in combination with recombinant human platelet-derived growth factor - BB (rh-PDGF-BB) for the treatment of human infrabony defects. Journal of Stem Cells, 10(4), 243–254.

    CAS  PubMed  Google Scholar 

  36. Chen, F. M., et al. (2016). Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Research & Therapy, 7, 33.

    Article  Google Scholar 

  37. Hernández-Monjaraz, B., et al. (2020). Dental pulp mesenchymal stem cells as a treatment for periodontal disease in older adults. Stem Cells Int, 2020, 8890873.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ferrarotti, F., et al. (2018). Human intrabony defect regeneration with micrografts containing dental pulp stem cells: a randomized controlled clinical trial. Journal of Clinical Periodontology, 45(7), 841–850.

    Article  CAS  PubMed  Google Scholar 

  39. Apatzidou, D. A., et al. (2021). A tissue-engineered biocomplex for periodontal reconstruction. a proof-of-principle randomized clinical study. Journal of Clinical Periodontology, 48(8), 1111–1125.

    Article  CAS  PubMed  Google Scholar 

  40. Sánchez, N., et al. (2020). Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament-derived mesenchymal stem cells: a 12-month quasi-randomized controlled pilot clinical trial. Journal of Clinical Periodontology, 47(11), 1391–1402.

    Article  PubMed  Google Scholar 

  41. Yamamiya, K., et al. (2008). Tissue-engineered cultured periosteum used with platelet-rich plasma and hydroxyapatite in treating human osseous defects. Journal of Periodontology, 79(5), 811–818.

    Article  PubMed  Google Scholar 

  42. Akbay, A., et al. (2005). Periodontal regenerative potential of autogenous periodontal ligament grafts in class II furcation defects. Journal of Periodontology, 76(4), 595–604.

    Article  PubMed  Google Scholar 

  43. Barberio, B., et al. (2023). Efficacy of biological therapies and small molecules in induction and maintenance of remission in luminal crohn’s disease: systematic review and network meta-analysis. Gut, 72(2), 264–274.

    Article  CAS  PubMed  Google Scholar 

  44. Nuñez, J., et al. (2018). Cell therapy with allogenic canine periodontal ligament-derived cells in periodontal regeneration of critical size defects. Journal of Clinical Periodontology, 45(4), 453–461.

    Article  PubMed  Google Scholar 

  45. Hu, J., et al. (2016). Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Research & Therapy, 7(1), 130.

    Article  Google Scholar 

  46. Iwasaki, K., et al. (2022). Stem cell transplantation and cell-free treatment for periodontal regeneration. International Journal of Molecular Sciences, 23(3), 1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cecoro, G., et al. (2021). Cell-based therapies for the surgical treatment of periodontal intrabony defects: a systematic review. European Review for Medical and Pharmacological Sciences, 25(21), 6592–6602.

    CAS  PubMed  Google Scholar 

  48. Zhang, Y., et al. (2022). The application of stem cells in tissue engineering for the regeneration of periodontal defects in randomized controlled trial: a systematic review and meta-analysis. The Journal of Evidence-Based Dental Practice, 22(2), 101713.

    Article  PubMed  Google Scholar 

  49. Block, T. J., et al. (2017). Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Research & Therapy, 8(1), 239.

    Article  Google Scholar 

  50. Pittenger, M. F., et al. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative Medicine, 4, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Luo, N., et al. (2023). Wnt3a-loaded hydroxyapatite NANOWIRE@MESOPOROUS silica Core-Shell nanocomposite promotes the regeneration of dentin-pulp complex via angiogenesis, oxidative stress resistance, and odontogenic induction of stem cells. Advanced Healthcare Materials, 12(22), e2300229.

    Article  PubMed  Google Scholar 

  52. Liu, L., et al. (2009). Stem cell regulatory gene expression in human adult dental pulp and periodontal ligament cells undergoing odontogenic/osteogenic differentiation. Journal of Endodontia, 35(10), 1368–1376.

    Article  Google Scholar 

  53. Bassir, S. H., et al. (2016). Potential for stem cell-based periodontal therapy. Journal of Cellular Physiology, 231(1), 50–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawaguchi, H., et al. (2004). Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. Journal of Periodontology, 75(9), 1281–1287.

    Article  PubMed  Google Scholar 

  55. Duan, X., et al. (2011). Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. Journal of Cellular Physiology, 226(1), 150–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China [81800788 and 81773339], Science and Technology Department of Hunan Province, China [2017WK2041 and 2018SK52511], Scientific Research Project of Hunan Provincial Health Commission [202208043514], Natural Science Foundation of Hunan Province [2022JJ30062], Natural Science Foundation of Changsha City [kq2202403 and kq2202412], Education and Teaching Reform Research Project of Central South University [2020jy165-3].

Author information

Authors and Affiliations

Authors

Contributions

**g Hu: contributed to the conceptualization, formal analysis, data curation, writing-original draft preparation. Ze-Yue Ou-Yang was a major contributor in methodology, software, writing- reviewing and editing. Ya-Qiong Zhao, Jie Zhao performed the visualization. Li Tan, Qiong Liu, Min-yuan Wang, Qin Ye, Yao Feng, Meng-Mei Zhong, Ning-**n Chen, **ao-Lin Su, Qian Zhang, Yun-Zhi Feng and Yue Guo read and approved the final manuscript.

Corresponding authors

Correspondence to Yun-Zhi Feng or Yue Guo.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Conflicts of Interest/Competing Interests

The authors declare that they have no competing interests.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**g Hu and Ze-Yue Ou-Yang contributed equally to this work and share the first authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

12015_2024_10690_MOESM1_ESM.png

Supplementary file1 (PNG 370 KB) (A, C, E, G) Funnel plot of meta-analyses of PD, CAL, BDD, GR, (B, D, F, H) and sensitivity analysis of the effects of meta-analyses of PD, CAL, BDD, GR.

12015_2024_10690_MOESM2_ESM.png

Supplementary file2 (PNG 338 KB) (A) Comparison between autologous stem cell therapy versus therapy without autologous stem cell in terms of PD; (B) Subgroup analysis according to 3-, 6- and 12-month follow-up results of PD. "a", "b" and "d" subscript letters next to the year of study denotes different follow-up time groups within the same study. "1" and "2" subscript number next to the year of study: denotes different treatment groups within the same study.

12015_2024_10690_MOESM3_ESM.png

Supplementary file3 (PNG 311 KB) (A) Comparison between autologous stem cell therapy versus therapy without autologous stem cell in terms of CAL; (B) Subgroup analysis according to 3-, 6- and 12-month follow-up results of CAL. "a", "b" and "d" subscript letters next to the year of study denotes different follow-up time groups within the same study.

12015_2024_10690_MOESM4_ESM.png

Supplementary file4 (PNG 265 KB) Comparison between autologous stem cell therapy versus therapy without autologous stem cell in terms of BDD; (B) Subgroup analysis according to 3-, 6- and 12-month follow-up results of BDD. "a", "b" and "d" subscript letters next to the year of study denotes different follow-up time groups within the same study.

12015_2024_10690_MOESM5_ESM.png

Supplementary file5 (PNG 308 KB) Comparison between autologous stem cell therapy versus therapy without autologous stem cell in terms of GR; (B) Subgroup analysis according to 3-, 6- and 12-month follow-up results of GR. "a", "b" and "d" subscript letters next to the year of study denotes different follow-up time groups within the same study. "1" and "2" subscript number next to the year of study: denotes different treatment groups within the same study.

Supplementary file6 (PNG 216 KB) Leave-one-out plot.

Supplementary file7 (PNG 158 KB) Funnel plot of SNPs associated with DLK1 and their risk of loose teeth.

Supplementary file8 (DOCX 19 KB) Table S1: Literature search format.

12015_2024_10690_MOESM9_ESM.docx

Supplementary file9 (DOCX 39 KB) Table S2 STROBE-MR checklist of recommended items to address in reports of Mendelian randomization studies

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Ou-Yang, ZY., Zhao, YQ. et al. Evaluation of the Efficacy of Stem Cells Therapy in the Periodontal Regeneration: A Meta-Analysis and Mendelian Randomization Study. Stem Cell Rev and Rep 20, 980–995 (2024). https://doi.org/10.1007/s12015-024-10690-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-024-10690-x

Keywords

Navigation