Log in

Current Progress in Stem Cell Therapy for Male Infertility

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Infertility has become one of the most common issues worldwide, which has negatively affected society and infertile couples. Meanwhile, male infertility is responsible for about 50% of infertility. Accordingly, a great number of researchers have focused on its treatment during the last few years; however, current therapies such as assisted reproductive technology (ART) are not effective enough in treating male infertility. Because of their self-renewal and differentiation capabilities and unlimited sources, stem cells have recently raised great hope in the treatment of reproductive system disorders. Stem cells are undifferentiated cells that can induce different numbers of specific cells, such as male and female gametes, demonstrating their potential application in the treatment of infertility. The present review aimed at identifying the causes and potential factors that influence male fertility. Besides, we highlighted the recent studies that investigated the efficiency of stem cells such as spermatogonial stem cells (SSCs), embryonic stem cells (ESCs), very small embryonic-like stem cells (VSELs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) in the treatment of various types of male infertility.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Vander Borght, M., & Wyns, C. (2018). Fertility and infertility: Definition and epidemiology. Clinical Biochemistry, 62, 2–10. https://doi.org/10.1016/j.clinbiochem.2018.03.012

    Article  PubMed  Google Scholar 

  2. Panner Selvam, M. K., Ambar, R. F., Agarwal, A., & Henkel, R. (2021). Etiologies of sperm DNA damage and its impact on male infertility. Andrologia, 53(1), e13706. https://doi.org/10.1111/and.13706

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal, A., Parekh, N., Panner Selvam, M. K., Henkel, R., Shah, R., Homa, S. T., Ramasamy, R., Ko, E., Tremellen, K., Esteves, S., et al. (2019). Male oxidative stress infertility (MOSI): Proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World Journal of Men’s Health, 37(3), 296–312. https://doi.org/10.5534/wjmh.190055

    Article  PubMed  Google Scholar 

  4. Ring, J. D., Lwin, A. A., & Köhler, T. S. (2016). Current medical management of endocrine-related male infertility. Asian Journal of Andrology, 18(3), 357–363. https://doi.org/10.4103/1008-682x.179252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Turner, K. A., Rambhatla, A., Schon, S., Agarwal, A., Krawetz, S. A., Dupree, J. M., & Avidor-Reiss, T. (2020). Male infertility is a women’s Health issue-research and clinical evaluation of male infertility is needed. Cells, 9(4), https://doi.org/10.3390/cells9040990

  6. Zandieh, Z., Vatannejad, A., Doosti, M., Zabihzadeh, S., Haddadi, M., Bajelan, L., Rashidi, B., & Amanpour, S. (2018). Comparing reactive oxygen species and DNA fragmentation in semen samples of unexplained infertile and healthy fertile men. Irish Journal Of Medical Science, 187(3), 657–662. https://doi.org/10.1007/s11845-017-1708-7

    Article  CAS  PubMed  Google Scholar 

  7. Babakhanzadeh, E., Nazari, M., Ghasemifar, S., & Khodadadian, A. (2020). Some of the factors involved in male infertility: A prospective review. International Journal Of General Medicine, 13, 29–41. https://doi.org/10.2147/ijgm.S241099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fang, F., Li, Z., Zhao, Q., Li, H., & **ong, C. (2018). Human induced pluripotent stem cells and male infertility: An overview of current progress and perspectives. Human Reproduction (Oxford England), 33(2), 188–195. https://doi.org/10.1093/humrep/dex369

    Article  CAS  PubMed  Google Scholar 

  9. Ghanbari, E., Khazaei, M., Ghahremani-Nasab, M., Mehdizadeh, A., & Yousefi, M. (2020). Novel therapeutic approaches of tissue engineering in male infertility. Cell And Tissue Research, 380(1), 31–42. https://doi.org/10.1007/s00441-020-03178-w

    Article  PubMed  Google Scholar 

  10. Bhartiya, D., Hinduja, I., Patel, H., & Bhilawadikar, R. (2014). Making gametes from pluripotent stem cells – a promising role for very small embryonic-like stem cells. Reproductive Biology and Endocrinology, 12(1), 114. https://doi.org/10.1186/1477-7827-12-114

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saha, S., Roy, P., Corbitt, C., Kakar, S. S. (2021). Application of stem cell therapy for infertility. Cells, 10(7).

  12. Kaushik, A., Anand, S., & Bhartiya, D. (2020). Altered Biology of testicular VSELs and SSCs by neonatal endocrine disruption results in defective spermatogenesis, reduced fertility and tumor initiation in adult mice. Stem Cell Reviews and Reports, 16(5), 893–908. https://doi.org/10.1007/s12015-020-09996-3

    Article  CAS  PubMed  Google Scholar 

  13. Ferlin, A., Raicu, F., Gatta, V., Zuccarello, D., Palka, G., & Foresta, C. (2007). Male infertility: Role of genetic background. Reproductive BioMedicine Online, 14(6), 734–745. https://doi.org/10.1016/S1472-6483(10)60677-3

    Article  CAS  PubMed  Google Scholar 

  14. Hajiesmailpoor, A., Emami, P., Kondori, B. J., & Ghorbani, M. (2021). Stem cell therapy as a recent advanced approach in male infertility. Tissue and Cell, 73, 101634. https://doi.org/10.1016/j.tice.2021.101634

    Article  CAS  PubMed  Google Scholar 

  15. Agarwal, A., Panner Selvam, M. K., Baskaran, S., Finelli, R., Leisegang, K., Barbăroșie, C., Pushparaj, P. N., Robert, K. A., Ambar, R., Iovine, C., et al. (2021). A scientometric analysis of research publications on male infertility and assisted reproductive technology. Andrologia, 53(1), e13842. https://doi.org/10.1111/and.13842

    Article  PubMed  Google Scholar 

  16. Bungum, M., Humaidan, P., Spano, M., Jepson, K., Bungum, L., & Giwercman, A. (2004). The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Human Reproduction, 19(6), 1401–1408. https://doi.org/10.1093/humrep/deh280

    Article  CAS  PubMed  Google Scholar 

  17. Ishii, T. (2014). Potential impact of human mitochondrial replacement on global policy regarding germline gene modification. Reproductive BioMedicine Online, 29(2), 150–155. https://doi.org/10.1016/j.rbmo.2014.04.001

    Article  PubMed  Google Scholar 

  18. Wang, J., Liu, C., Fu**o, M., Tong, G., Zhang, Q., Li, X. K., & Yan, H. (2019). Stem cells as a resource for treatment of infertility-related Diseases. Current Molecular Medicine, 19(8), 539–546. https://doi.org/10.2174/1566524019666190709172636

    Article  CAS  PubMed  Google Scholar 

  19. Hansen, M., Kurinczuk, J. J., Milne, E., de Klerk, N., & Bower, C. (2013). Assisted reproductive technology and birth defects: A systematic review and meta-analysis. Human Reproduction Update, 19(4), 330–353. https://doi.org/10.1093/humupd/dmt006

    Article  PubMed  Google Scholar 

  20. Abbaszadeh, H., Ghorbani, F., Abbaspour-Aghdam, S., Kamrani, A., Valizadeh, H., Nadiri, M., Sadeghi, A., Shamsasenjan, K., Jadidi-Niaragh, F., Roshangar, L., et al. (2022). Chronic obstructive pulmonary disease and asthma: Mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools. Stem Cell Research & Therapy, 13(1), 262. https://doi.org/10.1186/s13287-022-02938-5

    Article  Google Scholar 

  21. Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A. A., Yousefi, M., Talebi, M., & Shamsasenjan, K. (2020). Regenerative potential of Wharton’s jelly-derived mesenchymal stem cells: A new horizon of stem cell therapy. Journal of Cellular Physiology, 235(12), 9230–9240. https://doi.org/10.1002/jcp.29810

    Article  CAS  PubMed  Google Scholar 

  22. Ntege, E. H., Sunami, H., & Shimizu, Y. (2020). Advances in regenerative therapy: A review of the literature and future directions. Regenerative Therapy, 14, 136–153. https://doi.org/10.1016/j.reth.2020.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee, W. S., Kim, H. J., Kim, K. I., Kim, G. B., & **, W. (2019). Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: A phase IIb, Randomized, Placebo-Controlled Clinical Trial. Stem Cells Translational Medicine, 8(6), 504–511. https://doi.org/10.1002/sctm.18-0122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song, Y., Du, H., Dai, C., Zhang, L., Li, S., Hunter, D. J., Lu, L., & Bao, C. (2018). Human adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injections. Regenerative Medicine, 13(3), 295–307. https://doi.org/10.2217/rme-2017-0152

    Article  CAS  PubMed  Google Scholar 

  25. Lu, L., Dai, C., Zhang, Z., Du, H., Li, S., Ye, P., Fu, Q., Zhang, L., Wu, X., Dong, Y., et al. (2019). Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: A prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Research & Therapy, 10(1), 143. https://doi.org/10.1186/s13287-019-1248-3

    Article  CAS  Google Scholar 

  26. Zhou, L., Wang, H., Yao, S., Li, L., & Kuang, X. (2022). Efficacy of human adipose derived mesenchymal stem cells in promoting skin wound healing. Journal of Healthcare Engineering, 2022, 6590025. https://doi.org/10.1155/2022/6590025

  27. **ao, Z., Tang, F., Zhao, Y., Han, G., Yin, N., Li, X., Chen, B., Han, S., Jiang, X., Yun, C., et al. (2018). Significant improvement of Acute Complete spinal cord Injury Patients diagnosed by a combined Criteria implanted with NeuroRegen Scaffolds and mesenchymal stem cells. Cell Transplantation, 27(6), 907–915. https://doi.org/10.1177/0963689718766279

    Article  PubMed  PubMed Central  Google Scholar 

  28. Saini, R., Pahwa, B., Agrawal, D., Singh, P. K., Gujjar, H., Mishra, S., Jagdevan, A., & Misra, M. C. (2022). Efficacy and outcome of bone marrow derived stem cells transplanted via intramedullary route in acute complete spinal cord injury - A randomized placebo controlled trial. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 100, 7–14. https://doi.org/10.1016/j.jocn.2022.03.033

    Article  PubMed  Google Scholar 

  29. Bansal, H., Verma, P., Agrawal, A., Leon, J., Sundell, I. B., & Koka, P. S. (2016). Autologous bone marrow-derived stem cells in spinal cord Injury. Journal of Stem Cells, 11(1), 51–61.

    PubMed  Google Scholar 

  30. Shin, J. H., Ryu, C. M., Yu, H. Y., Park, J., Kang, A. R., Shin, J. M., Hong, K. S., Kim, E. Y., Chung, H. M., Shin, D. M., et al. (2022). Safety of human embryonic stem cell-derived mesenchymal stem cells for treating interstitial cystitis: A phase I study. Stem Cells Translational Medicine, 11(10), 1010–1020. https://doi.org/10.1093/stcltm/szac065

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ding, L., Yan, G., Wang, B., Xu, L., Gu, Y., Ru, T., Cui, X., Lei, L., Liu, J., Sheng, X., et al. (2018). Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Science China Life Sciences, 61(12), 1554–1565. https://doi.org/10.1007/s11427-017-9272-2

    Article  CAS  PubMed  Google Scholar 

  32. Mashayekhi, M., Mirzadeh, E., Chekini, Z., Ahmadi, F., Eftekhari-Yazdi, P., Vesali, S., Madani, T., & Aghdami, N. (2021). Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: Non-randomized clinical trial, phase I, first in human. Journal of Ovarian Research, 14(1), 5. https://doi.org/10.1186/s13048-020-00743-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aziz, N. (2013). The importance of semen analysis in the context of azoospermia. Clinics (Sao Paulo), 68(Suppl 1), 35–38. https://doi.org/10.6061/clinics/2013(sup01)05

    Article  PubMed  Google Scholar 

  34. Leaver, R. B. (2016). Male infertility: An overview of causes and treatment options. British Journal of Nursing, 25(18), S35–S40. https://doi.org/10.12968/bjon.2016.25.18.S35

    Article  PubMed  Google Scholar 

  35. Chiba, K., Enatsu, N., & Fujisawa, M. (2016). Management of non-obstructive azoospermia. Reproductive Medicine and Biology, 15(3), 165–173. https://doi.org/10.1007/s12522-016-0234-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyamoto, T., Minase, G., Okabe, K., Ueda, H., & Sengoku, K. (2015). Male infertility and its genetic causes. Journal of Obstetrics and Gynaecology Research, 41(10), 1501–1505. https://doi.org/10.1111/jog.12765

    Article  CAS  PubMed  Google Scholar 

  37. Bak, C. W., Song, S. H., Yoon, T. K., Lim, J. J., Shin, T. E., & Sung, S. (2010). Natural course of idiopathic oligozoospermia: Comparison of mild, moderate and severe forms. International Journal Of Urology, 17(11), 937–943. https://doi.org/10.1111/j.1442-2042.2010.02628.x

    Article  PubMed  Google Scholar 

  38. Pourmoghadam, Z., Aghebati-Maleki, L., Motalebnezhad, M., Yousefi, B., & Yousefi, M. (2018). Current approaches for the treatment of male infertility with stem cell therapy. Journal Of Cellular Physiology, 233(10), 6455–6469. https://doi.org/10.1002/jcp.26577

    Article  CAS  PubMed  Google Scholar 

  39. Fan, L. W., Shao, I. H., & Hsieh, M. L. (2020). The simple solution for infertile patients with aspermia in the modern era of assisted reproductive technique. Urological Science, 31(6), 277–281. https://doi.org/10.4103/uros.Uros_116_20

    Article  Google Scholar 

  40. Mehta, A., & Sigman, M. (2015). Management of the dry ejaculate: A systematic review of aspermia and retrograde ejaculation. Fertility And Sterility, 104(5), 1074–1081. https://doi.org/10.1016/j.fertnstert.2015.09.024

    Article  PubMed  Google Scholar 

  41. Crosnoe, L. E., Grober, E., Ohl, D., & Kim, E. D. (2013). Exogenous testosterone: A preventable cause of male infertility.  Translational Andrology and Urology, 2(2), 106–113. https://doi.org/10.3978/j.issn.2223-4683.2013.06.01

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, X. B., Wu, Q. J., Liu, F. H., Zhang, S., Wang, H. Y., Guo, R. H., et al. (2021). The association between dairy product consumption and asthenozoospermia Risk: A hospital-based case-control study. Frontiers in Nutrition, 8, 714291.

  43. Ortega, C., Verheyen, G., Raick, D., Camus, M., Devroey, P., & Tournaye, H. (2011). Absolute asthenozoospermia and ICSI: What are the options? Human Reproduction Update, 17(5), 684–692. https://doi.org/10.1093/humupd/dmr018

    Article  CAS  PubMed  Google Scholar 

  44. Doddamani, S. H., Shubhashree, M. N., Giri, S. K., Naik, R., & Bharali, B. K. (2019). Ayurvedic management of necrozoospermia - a case report. Ayu, 40(1), 44–47. https://doi.org/10.4103/ayu.AYU_120_15

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Braekeleer, M., Nguyen, M. H., Morel, F., & Perrin, A. (2015). Genetic aspects of monomorphic teratozoospermia: A review. Journal Of Assisted Reproduction And Genetics, 32(4), 615–623. https://doi.org/10.1007/s10815-015-0433-2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sharpe, R. M. (2012). Sperm counts and fertility in men: A rocky road ahead. EMBO Reports, 13(5), 398–403. https://doi.org/10.1038/embor.2012.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhasin, S., & Jameson, J. L. (2018). Disorders of the testes and male reproductive system. In J.L. Jameson, A. S. Fauci, D. L. Kasper, S. L. Hauser,  D. L. Longo, J. Loscalzo (Eds.)  Harrison’s Principles of Internal Medicine, 20e edn. McGraw-Hill Education.

  48. Chirputkar, R., & Vaidya, A. (2015). Understanding infertility and the potential role of stem cells in infertility treatment: A short com-munication. International Journal of Reproduction, Fertility & Sexual Health, 2, 37–40.

    Google Scholar 

  49. Abid, S., Maitra, A., Meherji, P., Patel, Z., Kadam, S., Shah, J., Shah, R., Kulkarni, V., Baburao, V., & Gokral, J. (2008). Clinical and laboratory evaluation of idiopathic male infertility in a secondary referral center in India. Journal Of Clinical Laboratory Analysis, 22(1), 29–38. https://doi.org/10.1002/jcla.20216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Minhas, S., Bettocchi, C., Boeri, L., Capogrosso, P., Carvalho, J., Cilesiz, N. C., Cocci, A., Corona, G., Dimitropoulos, K., Gül, M., et al. (2021). European Association of Urology Guidelines on male sexual and Reproductive Health: 2021 update on male infertility. European Urology, 80(5), 603–620. https://doi.org/10.1016/j.eururo.2021.08.014

    Article  PubMed  Google Scholar 

  51. Tharakan, T., Corona, G., Foran, D., Salonia, A., Sofikitis, N., Giwercman, A., Krausz, C., Yap, T., Jayasena, C. N., & Minhas, S. (2022). Does hormonal therapy improve sperm retrieval rates in men with non-obstructive azoospermia: A systematic review and meta-analysis. Human Reproduction Update, 28(5), 609–628. https://doi.org/10.1093/humupd/dmac016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuroda, S., Usui, K., Sanjo, H., Takeshima, T., Kawahara, T., Uemura, H., & Yumura, Y. (2020). Genetic disorders and male infertility. Reproductive Medicine and Biology, 19(4), 314–322. https://doi.org/10.1002/rmb2.12336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Plaseska-Karanfilska, D., Noveski, P., Plaseski, T., Maleva, I., Madjunkova, S., & Moneva, Z. (2012). Genetic causes of male infertility. Balkan Journal of Medical Genetics: BJMG, 15(Suppl), 31–34. https://doi.org/10.2478/v10034-012-0015-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Serafini, M., Verfaillie, C. M. (2006) Pluripotency in adult stem cells: state of the art. In: Seminars in reproductive medicine: 2006: Copyright© 2006 by Thieme Medical Publishers, Inc., 9–388.

  55. Margiana, R., Pakpahan, C., & Pangestu, M. (eCollection 2022). A systematic review of retinoic acid in the journey of spermatogonium to spermatozoa: From basic to clinical application. F1000Res, 27(11), 552. https://doi.org/10.12688/f1000research.110510.2

  56. Davies, M. J., Moore, V. M., Willson, K. J., Van Essen, P., Priest, K., Scott, H., Haan, E. A., & Chan, A. (2012). Reproductive Technologies and the risk of birth defects. New England Journal of Medicine, 366(19), 1803–1813. https://doi.org/10.1056/NEJMoa1008095

    Article  CAS  PubMed  Google Scholar 

  57. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like Stem cells (VSELs). Circulation Research, 124(2), 208–210. https://doi.org/10.1161/circresaha.118.314287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zuba-Surma, E. K., Wojakowski, W., Ratajczak, M. Z., & Dawn, B. (2011). Very small embryonic-like stem cells: Biology and therapeutic potential for heart repair. Antioxidants & Redox Signaling, 15(7), 1821–1834. https://doi.org/10.1089/ars.2010.3817

    Article  CAS  Google Scholar 

  59. Fang, F., Li, Z., Zhao, Q., Ye, Z., Gu, X., Pan, F., et al. (2020). Induced pluripotent stem cells derived from two idiopathic azoospermia patients display compromised differentiation potential for primordial germ cell fate. Frontiers in Cell and Developmental Biology, 8, 432.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhu, Y., Hu, H. L., Li, P., Yang, S., Zhang, W., Ding, H., Tian, R. H., Ning, Y., Zhang, L. L., Guo, X. Z., et al. (2012). Generation of male germ cells from induced pluripotent stem cells (iPS cells): An in vitro and in vivo study. Asian Journal Of Andrology, 14(4), 574–579. https://doi.org/10.1038/aja.2012.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Volarevic, V., Bojic, S., Nurkovic, J., Volarevic, A., Ljujic, B., Arsenijevic, N., Lako, M., & Stojkovic, M. (2014). Stem cells as new agents for the treatment of infertility: current and future perspectives and challenges. BioMed Research International, 2014, 507234. https://doi.org/10.1155/2014/507234

  62. Phillips, B. T., Gassei, K., & Orwig, K. E. (2010). Spermatogonial stem cell regulation and spermatogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1546), 1663–1678. https://doi.org/10.1098/rstb.2010.0026

    Article  CAS  Google Scholar 

  63. Fayomi, A. P., & Orwig, K. E. (2018). Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Research, 29, 207–214. https://doi.org/10.1016/j.scr.2018.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abdelaal, N. E., Tanga, B. M., Abdelgawad, M., Allam, S., Fathi, M., Saadeldin, I. M., et al (2021). Cellular therapy via spermatogonial stem cells for treating impaired spermatogenesis, non-obstructive azoospermia. Cells, 10(7).

  65. Wang, Y. H., Yan, M., Zhang, X., Liu, X. Y., Ding, Y. F., Lai, C. P., Tong, M. H., & Li, J. S. (2021). Rescue of male infertility through correcting a genetic mutation causing meiotic arrest in spermatogonial stem cells. Asian Journal Of Andrology, 23(6), 590–599. https://doi.org/10.4103/aja.aja_97_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kubota, H., & Brinster, R. L. (2006). Technology insight: In vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nature Clinical Practice Endocrinology & Metabolism, 2(2), 99–108. https://doi.org/10.1038/ncpendmet0098

    Article  CAS  Google Scholar 

  67. Conrad, S., Renninger, M., Hennenlotter, J., Wiesner, T., Just, L., Bonin, M., Aicher, W., Bühring, H. J., Mattheus, U., Mack, A., et al. (2008). Generation of pluripotent stem cells from adult human testis. Nature, 456(7220), 344–349. https://doi.org/10.1038/nature07404

    Article  CAS  PubMed  Google Scholar 

  68. Singh, S. R., Burnicka-Turek, O., Chauhan, C., & Hou, S. X. (2011). Spermatogonial stem cells, infertility and testicular cancer. Journal of Cellular and Molecular Medicine, 15(3), 468–483. https://doi.org/10.1111/j.1582-4934.2010.01242.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Inaba, M., Yamashita, Y. M., & Buszczak, M. (2016). Kee** stem cells under control: New insights into the mechanisms that limit niche-stem cell signaling within the reproductive system. Molecular Reproduction and Development, 83(8), 675–683. https://doi.org/10.1002/mrd.22682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Potter, S. J., & DeFalco, T. (2017). Role of the testis interstitial compartment in spermatogonial stem cell function. Reproduction (Cambridge England), 153(4), R151-r162. https://doi.org/10.1530/rep-16-0588

    Article  CAS  PubMed  Google Scholar 

  71. Song, H. W., & Wilkinson, M. F. (2014). Transcriptional control of spermatogonial maintenance and differentiation. Seminars in Cell & Developmental Biology, 30, 14–26. https://doi.org/10.1016/j.semcdb.2014.02.005

    Article  CAS  Google Scholar 

  72. Peng, M., Wu, J., Wang, W., Liao, T., Xu, S., **ao, D., He, Z., & Yang, X. (2023). Alpha-tocopherol enhances spermatogonial stem cell proliferation and restores mouse spermatogenesis by up-regulating BMI1. Frontiers in Nutrition, 10, 1141964. https://doi.org/10.3389/fnut.2023.1141964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Du, L., Chen, W., Li, C., Cui, Y., & He, Z. (2022). RNF144B stimulates the proliferation and inhibits the apoptosis of human spermatogonial stem cells via the FCER2/NOTCH2/HES1 pathway and its abnormality is associated with azoospermia. Journal of Cellular Physiology, 237(9), 3565–3577. https://doi.org/10.1002/jcp.30813

    Article  CAS  PubMed  Google Scholar 

  74. Miller, J. L., & Grant, P. A. (2013). The role of DNA methylation and histone modifications in transcriptional regulation in humans. Sub-Cellular Biochemistry, 61, 289–317. https://doi.org/10.1007/978-94-007-4525-4_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Diao, L., Turek, P. J., John, C. M., Fang, F., & Reijo Pera, R. A. (2022). Roles of Spermatogonial Stem cells in spermatogenesis and fertility restoration. Frontiers in Endocrinology, 13, 895528. https://doi.org/10.3389/fendo.2022.895528

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li, J., Liu, X., Hu, X., Tian, G. G., Ma, W., Pei, X., Wang, Y., & Wu, J. (2017). MicroRNA-10b regulates the renewal of spermatogonial stem cells through Kruppel-like factor 4. Cell Biochemistry And Function, 35(3), 184–191. https://doi.org/10.1002/cbf.3263

    Article  CAS  PubMed  Google Scholar 

  77. Fu, H., Zhou, F., Yuan, Q., Zhang, W., Qiu, Q., Yu, X., & He, Z. (2019). miRNA-31-5p mediates the proliferation and apoptosis of human spermatogonial stem cells via Targeting JAZF1 and cyclin A2. Molecular Therapy Nucleic Acids, 14, 90–100. https://doi.org/10.1016/j.omtn.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  78. Zhou, F., Yuan, Q., Zhang, W., Niu, M., Fu, H., Qiu, Q., Mao, G., Wang, H., Wen, L., Wang, H., et al. (2018). MiR-663a stimulates proliferation and suppresses early apoptosis of human spermatogonial stem cells by Targeting NFIX and regulating cell cycle. Molecular Therapy Nucleic Acids, 12, 319–336. https://doi.org/10.1016/j.omtn.2018.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, M., Mu, H., Niu, Z., Chu, Z., Zhu, H., & Hua, J. (2014). miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2. Journal of Cellular Biochemistry, 115(2), 232–242. https://doi.org/10.1002/jcb.24655

    Article  CAS  PubMed  Google Scholar 

  80. Brinster, R. L., & Avarbock, M. R. (1994). Germline transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11303–11307. https://doi.org/10.1073/pnas.91.24.11303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ogawa, T., Dobrinski, I., Avarbock, M. R., & Brinster, R. L. (2000). Transplantation of male germ line stem cells restores fertility in infertile mice. Nature Medicine, 6(1), 29–34. https://doi.org/10.1038/71496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Margiana, R., Markov, A., Zekiy, A. O., Hamza, M. U., Al-Dabbagh, K. A., Al-Zubaidi, S. H., Hameed, N. M., Ahmad, I., Sivaraman, R., Kzar, H. H., et al. (2022). Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Research & Therapy, 13(1), 366. https://doi.org/10.1186/s13287-022-03054-0

    Article  CAS  Google Scholar 

  83. Lim, J. J., Sung, S. Y., Kim, H. J., Song, S. H., Hong, J. Y., Yoon, T. K., Kim, J. K., Kim, K. S., & Lee, D. R. (2010). Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Proliferation, 43(4), 405–417. https://doi.org/10.1111/j.1365-2184.2010.00691.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gholami, M., Saki, G., Hemadi, M., Khodadadi, A., & Mohammadi-Asl, J. (2014). Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice. Iranian Journal of Basic Medical Sciences, 17(2), 93–99.

    PubMed  PubMed Central  Google Scholar 

  85. Kazemzadeh, S., Mohammadpour, S., Madadi, S., Babakhani, A., Shabani, M., & Khanehzad, M. (2022). Melatonin in cryopreservation media improves transplantation efficiency of frozen–thawed spermatogonial stem cells into testes of azoospermic mice. Stem Cell Research & Therapy, 13(1), 346. https://doi.org/10.1186/s13287-022-03029-1

    Article  CAS  Google Scholar 

  86. Veisi, M., Mansouri, K., Assadollahi, V., Jalili, C., Pirnia, A., Salahshoor, M. R., Hoseinkhani, Z., & Gholami, M. R. (2022). Evaluation of co-cultured spermatogonial stem cells encapsulated in alginate hydrogel with sertoli cells and their transplantation into azoospermic mice. Zygote, 30(3), 344–351. https://doi.org/10.1017/S0967199421000733

    Article  CAS  PubMed  Google Scholar 

  87. Yang, S., **, P., Ma, M., Li, P., Tian, R., Yang, H., Liu, Y., Gong, Y., Zhang, Z., Li, Z., et al. (2014). Generation of Haploid Spermatids with fertilization and development capacity from human spermatogonial stem cells of Cryptorchid Patients. Stem Cell Reports, 3(4), 663–675. https://doi.org/10.1016/j.stemcr.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nayernia, K., Nolte, J., Michelmann, H. W., Lee, J. H., Rathsack, K., Drusenheimer, N., Dev, A., Wulf, G., Ehrmann, I. E., Elliott, D. J., et al. (2006). In Vitro-Differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Developmental Cell, 11(1), 125–132. https://doi.org/10.1016/j.devcel.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  89. Toyooka, Y., Tsunekawa, N., Akasu, R., & Noce, T. (2003). Embryonic stem cells can form germ cells in vitro. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11457–11462. https://doi.org/10.1073/pnas.1932826100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aflatoonian, B., Ruban, L., Jones, M., Aflatoonian, R., Fazeli, A., & Moore, H. D. (2009). In vitro post-meiotic germ cell development from human embryonic stem cells. Human Reproduction, 24(12), 3150–3159. https://doi.org/10.1093/humrep/dep334

    Article  CAS  PubMed  Google Scholar 

  91. Rore, H., Owen, N., Piña-Aguilar, R. E., Docherty, K., & Sekido, R. (2021). Testicular somatic cell-like cells derived from embryonic stem cells induce differentiation of epiblasts into germ cells. Communications Biology, 4(1), 802. https://doi.org/10.1038/s42003-021-02322-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kurkure, P., Prasad, M., Dhamankar, V., & Bakshi, G. (2015). Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reproductive Biology and Endocrinology: RB&E, 13, 122. https://doi.org/10.1186/s12958-015-0121-1

  93. Yang, S., Bo, J., Hu, H., Guo, X., Tian, R., Sun, C., Zhu, Y., Li, P., Liu, P., Zou, S., et al. (2012). Derivation of male germ cells from induced pluripotent stem cells in vitro and in reconstituted seminiferous tubules. Cell Proliferation, 45(2), 91–100. https://doi.org/10.1111/j.1365-2184.2012.00811.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ramathal, C., Durruthy-Durruthy, J., Sukhwani, M., Arakaki, J. E., Turek, P. J., Orwig, K. E., & Reijo Pera, R. A. (2014). Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Reports, 7(4), 1284–1297. https://doi.org/10.1016/j.celrep.2014.03.067

    Article  CAS  PubMed  Google Scholar 

  95. Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., & Saitou, M. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell, 146(4), 519–532. https://doi.org/10.1016/j.cell.2011.06.052

    Article  CAS  PubMed  Google Scholar 

  96. Park, T. S., Galic, Z., Conway, A. E., Lindgren, A., van Handel, B. J., Magnusson, M., Richter, L., Teitell, M. A., Mikkola, H. K., Lowry, W. E., et al. (2009). Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells (Dayton Ohio), 27(4), 783–795. https://doi.org/10.1002/stem.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, X., Goodyear, S. M., Abramowitz, L. K., Bartolomei, M. S., Tobias, J. W., Avarbock, M. R., & Brinster, R. L. (2012). Fertile offspring derived from mouse spermatogonial stem cells cryopreserved for more than 14 years. Human Reproduction, 27(5), 1249–1259. https://doi.org/10.1093/humrep/des077

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bogliotti, Y. S., Wu, J., Vilarino, M., Okamura, D., Soto, D. A., Zhong, C., Sakurai, M., Sampaio, R. V., Suzuki, K., Izpisua Belmonte, J. C. (2018). Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences, 115(9), 2090–2095. https://doi.org/10.1073/pnas.1716161115

  99. Desai, N., Rambhia, P., & Gishto, A. (2015). Human embryonic stem cell cultivation: Historical perspective and evolution of xeno-free culture systems. Reproductive Biology and Endocrinology, 13(1), 9. https://doi.org/10.1186/s12958-015-0005-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mahabadi, J. A., Sabzalipoor, H., Nikzad, H., Seyedhosseini, E., Enderami, S. E., Gheibi Hayat, S. M., & Sahebkar, A. (2019). The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. Journal of Cellular Physiology, 234(8), 12278–12289. https://doi.org/10.1002/jcp.27990

    Article  CAS  PubMed  Google Scholar 

  101. Hübner, K., Fuhrmann, G., Christenson, L. K., Kehler, J., Reinbold, R., De La Fuente, R., Wood, J., Strauss, J. F., Boiani, M., & Schöler, H. R. (2003). Derivation of oocytes from mouse embryonic stem cells. Science, 300(5623), 1251–1256. https://doi.org/10.1126/science.1083452

    Article  CAS  PubMed  Google Scholar 

  102. Mahabadi, J. A., Sabzalipour, H., Bafrani, H. H., Gheibi Hayat, S. M., & Nikzad, H. (2018). Application of induced pluripotent stem cell and embryonic stem cell technology to the study of male infertility. Journal of Cellular Physiology, 233(11), 8441–8449. https://doi.org/10.1002/jcp.26757

    Article  CAS  PubMed  Google Scholar 

  103. Duggal, G., Heindryckx, B., Warrier, S., Taelman, J., Van der Jeught, M., Deforce, D., Chuva de Sousa Lopes, S., & De Sutter, P. (2015). Exogenous supplementation of activin a enhances germ cell differentiation of human embryonic stem cells. Molecular Human Reproduction, 21(5), 410–423. https://doi.org/10.1093/molehr/gav004

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, Y., Zhang, L., Zuo, Q., Wang, Y., Zhang, Y., Xu, Q., Li, B., & Chen, G. (2017). JAK-STAT signaling regulation of chicken embryonic stem cell differentiation into male germ cells. In Vitro Cellular & Developmental Biology Animal, 53(8), 728–743. https://doi.org/10.1007/s11626-017-0167-9

    Article  CAS  Google Scholar 

  105. Chen, H., Zuo, Q., Wang, Y., Ahmed, M. F., **, K., Song, J., Zhang, Y., & Li, B. (2017). Regulation of hedgehog signaling in Chicken Embryonic stem cells differentiation into male germ cells (Gallus). Journal of Cellular Biochemistry, 118(6), 1379–1386. https://doi.org/10.1002/jcb.25796

    Article  CAS  PubMed  Google Scholar 

  106. Lorzadeh, N., & Kazemirad, N. (2018). Embryonic stem cells and infertility. American Journal of Perinatology, 35(10), 925–930. https://doi.org/10.1055/s-0038-1632367

    Article  PubMed  Google Scholar 

  107. Cui, Y. H., Chen, W., Wu, S., Wan, C. L., & He, Z. (2023). Generation of male germ cells in vitro from the stem cells. Asian Journal of Andrology, 25(1), 13–20. https://doi.org/10.4103/aja20226

    Article  CAS  PubMed  Google Scholar 

  108. Zuba-Surma, E. K., Kucia, M., Wu, W., Klich, I., Lillard, J. W. Jr., Ratajczak, J., & Ratajczak, M. Z. (2008). Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 73a(12), 1116–1127. https://doi.org/10.1002/cyto.a.20667

  109. Kurkure, P., Prasad, M., Dhamankar, V., & Bakshi, G. (2015). Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reproductive Biology and Endocrinology, 13(1), 122. https://doi.org/10.1186/s12958-015-0121-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Patel, H., & Bhartiya, D. (2016). Testicular stem cells Express follicle-stimulating hormone receptors and are directly modulated by FSH. Reproductive Sciences (Thousand Oaks Calif), 23(11), 1493–1508. https://doi.org/10.1177/1933719116643593

    Article  CAS  PubMed  Google Scholar 

  111. Anand, S., Bhartiya, D., Sriraman, K., & Mallick, A. (2016). Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in Busulphan treated mouse testis. Stem Cell Reviews and Reports, 12(6), 682–697. https://doi.org/10.1007/s12015-016-9685-1

    Article  CAS  PubMed  Google Scholar 

  112. Bhartiya, D., Singh, P., Sharma, D., & Kaushik, A. (2022). Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues. Stem Cell Reviews and Reports, 18(5), 1718–1727. https://doi.org/10.1007/s12015-021-10243-6

    Article  CAS  PubMed  Google Scholar 

  113. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  114. Xu, X.-l., Yi, F., Pan, H.-z., Duan, S.-l., Ding, Z.-c., Yuan, G.-h., Qu, J., Zhang, H.-c., Liu, G.-h. (2013). Progress and prospects in stem cell terapy. Acta Parmacologica Sinica, 34(6), 741–746. https://doi.org/10.1038/aps.2013.77

  115. Hou, J., Yang, S., Yang, H., Liu, Y., Liu, Y., Hai, Y., Chen, Z., Guo, Y., Gong, Y., Gao, W. Q., et al. (2014). Generation of male differentiated germ cells from various types of stem cells. Reproduction, 147(6), R179–R188. https://doi.org/10.1530/REP-13-0649

    Article  CAS  PubMed  Google Scholar 

  116. Lee, J., Jung, S. M., Ebert, A. D., Wu, H., Diecke, S., Kim, Y., Yi, H., Park, S. H., & Ju, J. H. (2016). Generation of functional cardiomyocytes from the Synoviocytes of patients with rheumatoid arthritis via Induced Pluripotent Stem cells. Scientific Reports, 6, 32669. https://doi.org/10.1038/srep32669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Medrano, J. V., Ramathal, C., Nguyen, H. N., Simon, C., & Reijo Pera, R. A. (2012). Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells (Dayton Ohio), 30(3), 441–451. https://doi.org/10.1002/stem.1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pieri, N. C. G., de Souza, A. F., Botigelli, R. C., Pessôa, L. V. F., Recchia, K., Machado, L. S., Glória, M. H., de Castro, R. V. G., Leal, D. F., Fantinato Neto, P., et al. (2022). Porcine Primordial Germ Cell-Like cells generated from Induced Pluripotent stem cells under different culture conditions. Stem Cell Reviews and Reports, 18(5), 1639–1656. https://doi.org/10.1007/s12015-021-10198-8

    Article  CAS  PubMed  Google Scholar 

  119. Ghorbani, F., Movassaghpour, A. A., Talebi, M., Yousefi, M., & Abbaszadeh, H. (2022). Renoprotective effects of extracellular vesicles: A systematic review. Gene Reports, 26, 101491. https://doi.org/10.1016/j.genrep.2021.101491

    Article  CAS  Google Scholar 

  120. El Omar, R., Beroud, J., Stoltz, J. F., Menu, P., Velot, E., & Decot, V. (2014). Umbilical cord mesenchymal stem cells: The new gold standard for mesenchymal stem cell-based therapies? Tissue Engineering. Part B, Reviews, 20(5), 523–544. https://doi.org/10.1089/ten.TEB.2013.0664

    Article  PubMed  Google Scholar 

  121. Joseph, A., Baiju, I., Bhat, I. A., Pandey, S., Bharti, M., Verma, M., Pratap Singh, A., Ansari, M. M., Chandra, V., Saikumar, G., et al. (2020). Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. Journal of Cellular Physiology, 235(7–8), 5555–5569. https://doi.org/10.1002/jcp.29486

    Article  CAS  PubMed  Google Scholar 

  122. Qiu, X., Sun, C., Yu, W., Lin, H., Sun, Z., Chen, Y., Wang, R., & Dai, Y. (2012). Combined strategy of mesenchymal stem cell injection with vascular endothelial growth factor gene therapy for the treatment of Diabetes-Associated Erectile Dysfunction. Journal of Andrology, 33(1), 37–44. https://doi.org/10.2164/jandrol.110.012666

    Article  CAS  PubMed  Google Scholar 

  123. Murray, I. R., & Péault, B. (2015). Q&A: Mesenchymal stem cells — where do they come from and is it important? BMC Biology, 13(1), 99. https://doi.org/10.1186/s12915-015-0212-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A., & Yousefi, M. (2020). Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm. Journal Of Cellular Physiology, 235(2), 706–717. https://doi.org/10.1002/jcp.29004

    Article  CAS  PubMed  Google Scholar 

  125. Taylor, D. A., Chacon-Alberty, L., Sampaio, L. C., Hierro MGd, Perin, E. C., Mesquita, F. C. P., Henry, T. D., Traverse, J. H., Pepine, C. J., Hare, J. M., et al. (2022). Recommendations for nomenclature and definition of cell products intended for human cardiovascular use. Cardiovascular Research, 118(11), 2428–2436. https://doi.org/10.1093/cvr/cvab270

    Article  CAS  PubMed  Google Scholar 

  126. Nayernia, K., Lee, J. H., Drusenheimer, N., Nolte, J., Wulf, G., Dressel, R., Gromoll, J., & Engel, W. (2006). Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation, 86(7), 654–663. https://doi.org/10.1038/labinvest.3700429

    Article  CAS  PubMed  Google Scholar 

  127. Yazawa, T., Mizutani, T., Yamada, K., Kawata, H., Sekiguchi, T., Yoshino, M., Kajitani, T., Shou, Z., Umezawa, A., & Miyamoto, K. (2006). Differentiation of adult stem cells derived from bone marrow stroma into Leydig or Adrenocortical cells. Endocrinology, 147(9), 4104–4111. https://doi.org/10.1210/en.2006-0162

    Article  CAS  PubMed  Google Scholar 

  128. Bakry, S., Zahkook, S., Atwa, A., Shahat, M., & Mansour, A. (2014). Mesenchymal stem cells restore fertility in Induced Azoospermic rats following Chemotherapy Administration. Journal of Reproduction and Infertility, 5, 50–57. https://doi.org/10.5829/idosi.jri.2014.5.2.84101

    Article  Google Scholar 

  129. Zhang, D., Liu, X., Peng, J., He, D., Lin, T., Zhu, J., Li, X., Zhang, Y., & Wei, G. (2014). Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. International Journal Of Molecular Sciences, 15(8), 13151–13165. https://doi.org/10.3390/ijms150813151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lue, Y. H., Erkkila, K., Liu, P., Ma, K., Wang, C., Hikim, A., & Swerdloff, R. (2007). Fate of bone marrow stem cells transplanted into the testis: Potential implication for men with testicular failure. The American Journal of Pathology, 170, 899–908. https://doi.org/10.2353/ajpath.2007.060543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cai, Y., **ong, C., Liu, T., Shen, S., Rao, J., & Qiu, F. (2021). Secretions released from mesenchymal stem cells improve spermatogenesis restoration of cytotoxic treatment with busulfan in azoospermia mice. Andrologia, 53(8), e14144. https://doi.org/10.1111/and.14144

    Article  CAS  PubMed  Google Scholar 

  132. Safitri, E., & Purnobasuki, H. (2021). Effectiveness of mesenchymal stem cells cultured under hypoxia to increase the fertility rate in rats (Rattus norvegicus). Veterinary World, 14(11), 3056–3064. https://doi.org/10.14202/vetworld.2021.3056-3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Abougalala, F. M. A., Ek, A., Fayyad, R. M. A., Elsaied, M. Y., & Abdelmonsef, A. S. (2022). Mesenchymal stem cells for Busulfan–Induced Azoospermia: An experimental study. International Journal of Medical Arts, 4(4), 2319–2324. https://doi.org/10.21608/ijma.2022.237915

    Article  Google Scholar 

  134. Zickri, M. B., Moustafa, M. H., Fasseh, A. E. E., & Kamar, S. S. (2021). Antioxidant and antiapoptotic paracrine effects of mesenchymal stem cells on spermatogenic arrest in oligospermia rat model. Annals of Anatomy - Anatomischer Anzeiger, 237, 151750. https://doi.org/10.1016/j.aanat.2021.151750

    Article  PubMed  Google Scholar 

  135. Hajihoseini, M., Vahdati, A., Ebrahim Hosseini, S., Mehrabani, D., & Tamadon, A. (2017). Induction of spermatogenesis after stem cell therapy of azoospermic guinea pigs. Veterinarski arhiv, 87(3), 333–350.

    Article  CAS  Google Scholar 

  136. Aghamir, S. M. K., Salavati, A., Yousefie, R., Tootian, Z., Ghazaleh, N., Jamali, M., & Azimi, P. (2014). Does Bone Marrow-derived Mesenchymal Stem Cell Transfusion Prevent Antisperm Antibody Production After Traumatic Testis Rupture? Urology, 84. https://doi.org/10.1016/j.urology.2014.03.009

  137. Hassan, A. I., & Alam, S. S. (2014). Evaluation of mesenchymal stem cells in treatment of infertility in male rats. Stem Cell Research & Therapy, 5(6), 131. https://doi.org/10.1186/scrt521

    Article  Google Scholar 

  138. Ibrahim, D., Abozied, N., Abdel Maboud, S., Alzamami, A., Alturki, N. A., Jaremko, M., Alanazi, M. K., Alhuthali, H. M., & Seddek, A. (2023). Therapeutic potential of bone marrow mesenchymal stem cells in cyclophosphamide-induced infertility. Frontiers in Pharmacology, 14, 1122175. https://doi.org/10.3389/fphar.2023.1122175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sharifian, P., Yari, S., Hasanein, P., & Manteghi Nezhad, Y. (2022). Conditioned medium of bone marrow mesenchymal stem cells improves sperm parameters and reduces histological alteration in rat testicular ischaemia/reperfusion model. Andrologia, 54(11), e14624. https://doi.org/10.1111/and.14624

    Article  CAS  PubMed  Google Scholar 

  140. Önen, S., Köse, S., Yersal, N., & Korkusuz, P. (2022). Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Scientific Reports, 12(1), 1–14.

    Article  Google Scholar 

  141. Abd-Alameer, M., Rajabibazl, M., Esmaeilizadeh, Z., & Fazeli, Z. (2023). SAG-dihydrochloride enhanced the expression of germ cell markers in the human bone marrow- mesenchymal stem cells (BM-MSCs) through the activation of GLI-independent hedgehog signaling pathway. Gene, 849, 146902. https://doi.org/10.1016/j.gene.2022.146902

    Article  CAS  PubMed  Google Scholar 

  142. Faruk, E. M., Ibrahim, M. H., Eid, E. M., Shalaby, S. A., & Ebrahim, O. F. A. (2022). Comparative study between bone marrow-mesenchymal stem cells and adipose tissue-mesenchymal stem cells in restoration of male fertility. Journal of Pharmaceutical Research International, 2022, 44–69.

    Google Scholar 

  143. Ganjibakhsh, M., Mehraein, F., Koruji, M., & Bashiri, Z. (2022). The therapeutic potential of adipose tissue-derived mesenchymal stromal cells in the treatment of busulfan-induced azoospermic mice. Journal of Assisted Reproduction and Genetics, 39(1), 153–163. https://doi.org/10.1007/s10815-021-02309-8

    Article  PubMed  Google Scholar 

  144. Cakici, C., Buyrukcu, B., Duruksu, G., Haliloglu, A. H., Aksoy, A., Isık, A., Uludag, O., Ustun, H., Subası, C., & Karaoz, E. (2013). Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: The sperm generation. BioMed Research International, 2013, 529589.

  145. Mehrabani, D., Hassanshahi, M. A., Tamadon, A., Zare, S., Keshavarz, S., Rahmanifar, F., Dianatpour, M., Khodabandeh, Z., Jahromi, I., Tanideh, N., et al. (2015). Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. Journal of Human Reproductive Sciences, 8(2), 103–110. https://doi.org/10.4103/0974-1208.158618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mohammed, S. S., Mansour, M. F., & Salem, N. A. (2021). Therapeutic effect of stem cells on male infertility in a rat model: histological, molecular, biochemical, and functional study. Stem Cells International, 2021, 8450721. https://doi.org/10.1155/2021/8450721

  147. Ismail, H. Y., Shaker, N. A., Hussein, S., Tohamy, A., Fathi, M., Rizk, H., & Wally, Y. R. (2023). Cisplatin-induced azoospermia and testicular damage ameliorated by adipose-derived mesenchymal stem cells. Biological Research, 56(1), 2. https://doi.org/10.1186/s40659-022-00410-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mahboudi, S., Parivar, K., Mazaheri, Z., & Irani, S. H. (2021). Mir-106b Cluster regulates primordial germ cells differentiation from human mesenchymal stem cells. Cell Journal, 23(3), 294–302. https://doi.org/10.22074/cellj.2021.6836

    Article  PubMed  PubMed Central  Google Scholar 

  149. Abd El Kader, M. A., Gabr, M. M., Khater, S. M., Ghanem, R. A., & Abou El Naga, A. M. (2021). Impact of insulin producing cells derived from adipose tissue mesenchymal stem cells on testicular dysfunction of diabetic rats. Heliyon, 7(11), e08316. https://doi.org/10.1016/j.heliyon.2021.e08316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nejad, N. A., Amidi, F., Hoseini, M. A., Nia, K. N., Habibi, M., Kajbafzadeh, A. M., Mazaheri, Z., & Yamini, N. (2015). Male germ-like cell differentiation potential of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in co-culture with human placenta cells in presence of BMP4 and retinoic acid. Iranian Journal of Basic Medical Sciences, 18(4), 325–333.

    PubMed  PubMed Central  Google Scholar 

  151. Huang, P., Lin, L. M., Wu, X. Y., Tang, Q. L., Feng, X. Y., Lin, G. Y., Lin, X., Wang, H. W., Huang, T. H., & Ma, L. (2010). Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. Journal of Cellular Biochemistry, 109(4), 747–754. https://doi.org/10.1002/jcb.22453

    Article  CAS  PubMed  Google Scholar 

  152. Amidi, F., Ataie Nejad, N., Agha Hoseini, M., Nayernia, K., Mazaheri, Z., Yamini, N., & Saeednia, S. (2015). In vitro differentiation process of human Wharton’s jelly mesenchymal stem cells to male germ cells in the presence of gonadal and non-gonadal conditioned media with retinoic acid. In Vitro Cellular & Developmental Biology - Animal, 51(10), 1093–1101. https://doi.org/10.1007/s11626-015-9929-4

    Article  CAS  Google Scholar 

  153. **e, L., Lin, L., Tang, Q., Li, W., Huang, T., Huo, X., Liu, X., Jiang, J., He, G., & Ma, L. (2015). Sertoli cell-mediated differentiation of male germ cell-like cells from human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in an in vitro co-culture system. European Journal of Medical Research, 20(1), 9. https://doi.org/10.1186/s40001-014-0080-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, T., Wu, **e, L., & Ho, M. (2015). Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Molecular Medicine Reports, 12(1), 819–828. https://doi.org/10.3892/mmr.2015.3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mashiach, J., Zohni, K., Lopez, L., Filice, M., Garcia, M., Wyse, B., Glass, K., Dviri, M., Baram, S., Gauthier-Fisher, A., et al. (2021). Human umbilical cord perivascular cells prevent chemotherapeutic drug-induced male infertility in a mouse model. F&S Science, 2(1), 24–32. https://doi.org/10.1016/j.xfss.2020.12.002

    Article  Google Scholar 

  156. Cetinkaya-Un, B., Un, B., Akpolat, M., Andic, F., & Yazir, Y. (2022). Human amnion membrane-derived mesenchymal stem cells and conditioned medium can ameliorate X-Irradiation-Induced Testicular Injury by reducing endoplasmic reticulum stress and apoptosis. Reproductive Sciences, 29(3), 944–954. https://doi.org/10.1007/s43032-021-00753-6

    Article  CAS  PubMed  Google Scholar 

  157. Qian, C., Meng, Q., Lu, J., Zhang, L., Li, H., & Huang, B. (2020). Human amnion mesenchymal stem cells restore spermatogenesis in mice with busulfan-induced testis toxicity by inhibiting apoptosis and oxidative stress. Stem Cell Research & Therapy, 11(1), 290. https://doi.org/10.1186/s13287-020-01803-7

    Article  CAS  Google Scholar 

  158. Lu, J., Liu, Z., Shu, M., Zhang, L., **a, W., Tang, L., Li, J., Huang, B., & Li, H. (2021). Human placental mesenchymal stem cells ameliorate chemotherapy-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. Stem Cell Research & Therapy, 12(1), 199. https://doi.org/10.1186/s13287-021-02275-z

    Article  CAS  Google Scholar 

  159. Abd Allah, S. H., Pasha, H. F., Abdelrahman, A. A., & Mazen, N. F. (2017). Molecular effect of human umbilical cord blood CD34-positive and CD34-negative stem cells and their conjugate in azoospermic mice. Molecular and Cellular Biochemistry, 428(1), 179–191. https://doi.org/10.1007/s11010-016-2928-2

    Article  CAS  PubMed  Google Scholar 

  160. Hua, J., Yu, H., Dong, W., Yang, C., Gao, Z., Lei, A., Sun, Y., Pan, S., Wu, Y., & Dou, Z. (2009). Characterization of mesenchymal stem cells (MSCs) from human fetal lung: Potential differentiation of germ cells. Tissue and Cell, 41(6), 448–455. https://doi.org/10.1016/j.tice.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  161. Khamis, T., Abdelalim, A. F., Abdallah, S. H., Saeed, A. A., Edress, N. M., & Arisha, A. H. (2020). Early intervention with breast milk mesenchymal stem cells attenuates the development of diabetic-induced testicular dysfunction via hypothalamic Kisspeptin/Kiss1r-GnRH/GnIH system in male rats. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(1), 165577. https://doi.org/10.1016/j.bbadis.2019.165577

    Article  CAS  PubMed  Google Scholar 

  162. Mokarizadeh, A., Rezvanfar, M. A., Dorostkar, K., & Abdollahi, M. (2013). Mesenchymal stem cell derived microvesicles: Trophic shuttles for enhancement of sperm quality parameters. Reproductive Toxicology, 42, 78–84. https://doi.org/10.1016/j.reprotox.2013.07.024

    Article  CAS  PubMed  Google Scholar 

  163. Guo, X. B., Zhai, J. W., **a, H., Yang, J. K., Zhou, J. H., Guo, W. B., Yang, C., **a, M., Xue, K. Y., Liu, C. D., et al. (2021). Protective effect of bone marrow mesenchymal stem cell-derived exosomes against the reproductive toxicity of cyclophosphamide is associated with the p38MAPK/ERK and AKT signaling pathways. Asian Journal Of Andrology, 23(4), 386–391. https://doi.org/10.4103/aja.aja_98_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mutee’ Khudair, A., Medhat Alzaharna, M., & Akram Sharif, F. (2023). Trans differentiating human adipose-derived mesenchymal stem cells into male germ-like cells utilizing rabbit sertoli cells: An experimental study. International Journal of Reproductive Biomedicine, 21(3), 213–228. https://doi.org/10.18502/ijrm.v21i3.13197

    Article  PubMed  PubMed Central  Google Scholar 

  165. Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A., Yousefi, M., Talebi, M., & Shamsasenjan, K. (2020). Regenerative potential of Wharton’s jelly-derived mesenchymal stem cells: A new horizon of stem cell therapy. Journal of Cellular Physiology, 235. https://doi.org/10.1002/jcp.29810

  166. Huang, B., Ding, C., Zou, Q., Lu, J., Wang, W., & Li, H. (2020). Human amniotic fluid mesenchymal stem cells improve ovarian function during physiological aging by resisting DNA damage. 11. https://doi.org/10.3389/fphar.2020.00272

  167. Andreu, Z., & Yáñez-Mó, M. (2014). Tetraspanins in extracellular vesicle formation and function. Frontiers in Immunology, 5(442). https://doi.org/10.3389/fimmu.2014.00442

  168. Mobarak, H., Heidarpour, M., Rahbarghazi, R., Nouri, M., & Mahdipour, M. (2021). Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sciences, 274, 119336. https://doi.org/10.1016/j.lfs.2021.119336

    Article  CAS  PubMed  Google Scholar 

  169. Salek, F., Baharara, J., Shahrokhabadi, K. N., & Amini, E. (2021). The guardians of germ cells; sertoli-derived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells. Theriogenology, 173, 112–122. https://doi.org/10.1016/j.theriogenology.2021.08.001

    Article  CAS  PubMed  Google Scholar 

  170. Izadi, M., Dehghan Marvast, L., Rezvani, M. E., Zohrabi, M., Aliabadi, A., Mousavi, S. A., & Aflatoonian, B. (2022). Mesenchymal stem-cell derived exosome therapy as a potential future approach for treatment of male infertility caused by Chlamydia infection. 12. https://doi.org/10.3389/fmicb.2021.785622

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ria Margiana.

Ethics declarations

Ethics Approval

Not applicable.

Permission to Reproduce Material from Other Sources

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adriansyah, R.F., Margiana, R., Supardi, S. et al. Current Progress in Stem Cell Therapy for Male Infertility. Stem Cell Rev and Rep 19, 2073–2093 (2023). https://doi.org/10.1007/s12015-023-10577-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10577-3

Keywords

Navigation