Log in

The Brain: Is it a Next Frontier to Better Understand the Regulation and Control of Hematopoiesis for Future Modulation and Treatment?

  • SPOTLIGHT PAPER
  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

We wish to suggest the possibility there is a link between the brain and hematopoiesis in the bone marrow and that in the future it may be possible to use such information for better understanding of the regulation of hematopoiesis, and for efficacious treatment of hematopoietic disorders.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

N/A.

Code Availability

N/A.

References

  1. Holt, J. (2018). When Einstein walked with Gödel : Excursions to the edge of thought (pp. 1–384). Farrar, Straus and Giroux.

    Google Scholar 

  2. Goolsby, J., Marty, M. C., Heletz, D., Chiappelli, J., Tashko, G., Yarnell, D., Fishman, P. S., Dhib-Jalbut, S., Bever, C. T., Jr., Pessac, B., & Trisler, D. (2003). Hematopoietic progenitors express neural genes. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 14926–14931. https://doi.org/10.1073/pnas.2434383100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steidl, U., Bork, S., Schaub, S., Selbach, O., Seres, J., Aivado, M., Schroeder, T., Rohr, U. P., Fenk, R., Kliszewski, S., Maercker, C., Neubert, P., Bornstein, S. R., Haas, H. L., Kobbe, G., Tenen, D. G., Haas, R., & Kronenwett, R. (2004). Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. Blood, 104(1), 81–88. https://doi.org/10.1182/blood-2004-01-0373

    Article  CAS  PubMed  Google Scholar 

  4. Spiegel, A., Shivtiel, S., Kalinkovich, A., Ludin, A., Netzer, N., Goichberg, P., Azaria, Y., Resnick, I., Hardan, I., Ben-Hur, H., Nagler, A., Rubinstein, M., & Lapidot, T. (2007). Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nature Immunology, 8(10), 1123–1131. https://doi.org/10.1038/ni1509

    Article  CAS  PubMed  Google Scholar 

  5. Kalinkovich, A., Spiegel, A., Shivtiel, S., Kollet, O., Jordaney, N., Piacibello, W., & Lapidot, T. (2009). Blood-forming stem cells are nervous: Direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain, Behavior, and Immunity, 23(8), 1059–1065. https://doi.org/10.1016/j.bbi.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  6. Dar, A., Schajnovitz, A., Lapid, K., Kalinkovich, A., Itkin, T., Ludin, A., Kao, W. M., Battista, M., Tesio, M., Kollet, O., Cohen, N. N., Margalit, R., Buss, E. C., Baleux, F., Oishi, S., Fujii, N., Larochelle, A., Dunbar, C. E., Broxmeyer, H. E., Frenette, P. S., … Lapidot, T. (2011). Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia25(8), 1286–1296.https://doi.org/10.1038/leu.2011.62.

  7. Hanoun, M., Maryanovich, M., Arnal-Estapé, A., & Frenette, P. S. (2015). Neural regulation of hematopoiesis, inflammation, and cancer. Neuron, 86(2), 360–373. https://doi.org/10.1016/j.neuron.2015.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cosentino, M., Marino, F., & Maestroni, G. J. (2015). Sympathoadrenergic modulation of hematopoiesis: A review of available evidence and of therapeutic perspectives. Frontiers in Cellular Neuroscience, 9, 302. https://doi.org/10.3389/fncel.2015.00302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kwan, W., Cortes, M., Frost, I., Esain, V., Theodore, L. N., Liu, S. Y., Budrow, N., Goessling, W., & North, T. E. (2016). The central nervous system regulates embryonic HSPC production via stress-responsive glucocorticoid receptor signaling. Cell Stem Cell, 19(3), 370–382. https://doi.org/10.1016/j.stem.2016.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agarwala, S., & Tamplin, O. J. (2018). Neural crossroads in the hematopoietic stem cell niche. Trends in Cell Biology, 28(12), 987–998. https://doi.org/10.1016/j.tcb.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shao, L., Elujoba-Bridenstine, A., Zink, K. E., Sanchez, L. M., Cox, B. J., Pollok, K. E., Sinn, A. L., Bailey, B. J., Sims, E. C., Cooper, S. H., Broxmeyer, H. E., Pajcini, K. V., & Tamplin, O. J. (2021). The neurotransmitter receptor Gabbr1 regulates proliferation and function of hematopoietic stem and progenitor cells. Blood, 137(6), 775–787. https://doi.org/10.1182/blood.2019004415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaheen, M., & Broxmeyer, H. E. (2018). Cytokine/receptor families and signal transduction. In R. Hoffman, E. Benz, L. Silberstein, H. Heslop, J. I. Weitz, J. Anastasi, M. E. Salama, & S. A. Abutalib (Eds.) Hematology: Basic principles and practice, (7 ed, pp. 163–175). Chapter 16.

  13. Broxmeyer, H. E., & Capitano, M. L., et al. (2022). Cytokines, chemokines, other growth regulators, and their receptors. In R. Hoffman (Ed.), Hematology: Basic Principles and practice (8th ed.). Elsevier. In Press.

    Google Scholar 

  14. Lau, S. F., Fu, A. K. Y., & Ip, N. Y. (2021). Cytokine signaling convergence regulates the microglial state transition in Alzheimer’s disease [published online ahead of print, 2021 Apr 13]. Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-021-03810-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Smith, J. A., Das, A., Ray, S. K., & Banik, N. L. (2012). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Research Bulletin, 87(1), 10–20. https://doi.org/10.1016/j.brainresbull.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  16. Cui, L. Y., Chu, S. F., & Chen, N. H. (2020). The role of chemokines and chemokine receptors in multiple sclerosis. International Immunopharmacology, 83, 106314. https://doi.org/10.1016/j.intimp.2020.106314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wofford, K. L., Loane, D. J., & Cullen, D. K. (2019). Acute drivers of neuroinflammation in traumatic brain injury. Neural Regeneration Research, 14(9), 1481–1489. https://doi.org/10.4103/1673-5374.255958

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu, V. W., & Scadden, D. T. (2016). hematopoietic stem cell and its bone marrow niche. Current Topics in Developmental Biology, 118, 21–44. https://doi.org/10.1016/bs.ctdb.2016.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morrison, S. J., & Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483), 327–334. https://doi.org/10.1038/nature12984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asada, N., Takeishi, S., & Frenette, P. S. (2017). Complexity of bone marrow hematopoietic stem cell niche. International journal of hematology, 106(1), 45–54. https://doi.org/10.1007/s12185-017-2262-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wei, Q., & Frenette, P. S. (2018). Niches for hematopoietic stem cells and their progeny. Immunity, 48(4), 632–648. https://doi.org/10.1016/j.immuni.2018.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katayama, Y., Battista, M., Kao, W. M., Hidalgo, A., Peired, A. J., Thomas, S. A., & Frenette, P. S. (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124(2), 407–421. https://doi.org/10.1016/j.cell.2005.10.041

    Article  CAS  PubMed  Google Scholar 

  23. Pierce, H., Zhang, D., Magnon, C., Lucas, D., Christin, J. R., Huggins, M., Schwartz, G. J., & Frenette, P. S. (2017). Cholinergic signals from the CNS Regulate G-CSF-mediated hsc mobilization from bone marrow via a glucocorticoid signaling relay. Cell Stem Cell, 20(5), 648-658.e4. https://doi.org/10.1016/j.stem.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh, P., Hoggatt, J., Kamocka, M. M., Mohammad, K. S., Saunders, M. R., Li, H., Speth, J., Carlesso, N., Guise, T. A., & Pelus, L. M. (2017). Neuropeptide Y regulates a vascular gateway for hematopoietic stem and progenitor cells. The Journal of clinical investigation, 127(12), 4527–4540. https://doi.org/10.1172/JCI94687

    Article  PubMed  PubMed Central  Google Scholar 

  25. Itkin, T., Gómez-Salinero, J. M., & Rafii, S. (2017). Open the gates: Vascular neurocrine signaling mobilizes hematopoietic stem and progenitor cells. The Journal of Clinical Investigation, 127(12), 4231–4234. https://doi.org/10.1172/JCI98323

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maryanovich, M., Takeishi, S., & Frenette, P. S. (2018). Neural regulation of bone and bone marrow. Cold Spring Harbor perspectives in medicine, 8(9), a031344. https://doi.org/10.1101/cshperspect.a031344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maryanovich, M., Zahalka, A. H., Pierce, H., Pinho, S., Nakahara, F., Asada, N., Wei, Q., Wang, X., Ciero, P., Xu, J., Leftin, A., & Frenette, P. S. (2018). Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nature Medicine, 24(6), 782–791. https://doi.org/10.1038/s41591-018-0030-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao, X., Zhang, D., Xu, C., Li, H., Caron, K. M., & Frenette, P. S. (2021). Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature, 589(7843), 591–596. https://doi.org/10.1038/s41586-020-03057-y

    Article  CAS  PubMed  Google Scholar 

  29. Sperlágh, B. (2008). ATP-mediated signaling in the nervous system. In Handbook of neurochemistry and molecular neurobiology (pp. 227–254).https://doi.org/10.1007/978-0-387-30382-6_10.

  30. García-García A, Méndez-Ferrer S. The Autonomic Nervous System Pulls the Strings to Coordinate Circadian HSC Functions. Front Immunol. 2020;11:956. https://doi.org/10.3389/fimmu.2020.00956

  31. Gebhard, C., Bengs, S., Haider, A., & Fiechter, M. (2020). the neuro-inflammatory-vascular circuit: Evidence for a sex-dependent interrelation? Frontiers in Neuroscience, 14, 614345. https://doi.org/10.3389/fnins.2020.614345.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Otto, E., Knapstein, P. R., Jahn, D., et al. (2020). Crosstalk of brain and bone-clinical observations and their molecular bases. International Journal of Molecular Science, 21(14), 4946. https://doi.org/10.3390/ijms21144946

    Article  CAS  Google Scholar 

  33. Broxmeyer, H. E., Orschell, C. M., Clapp, D. W., Hangoc, G., Cooper, S., Plett, P. A., Liles, W. C., Li, X., Graham-Evans, B., Campbell, T. B., Calandra, G., Bridger, G., Dale, D. C., & Srour, E. F. (2005). Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. The Journal of experimental medicine, 201(8), 1307–1318. https://doi.org/10.1084/jem.20041385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christopherson, K. W., Cooper, S., Hangoc, G., & Broxmeyer, H. E. (2003). CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26-/- mice. Experimental Hematology, 31(11), 1126–1134. https://doi.org/10.1016/j.exphem.2003.07.002

    Article  CAS  PubMed  Google Scholar 

  35. Christopherson, K. W., 2nd., Cooper, S., & Broxmeyer, H. E. (2003). Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood, 101(12), 4680–4686. https://doi.org/10.1182/blood-2002-12-3893

    Article  CAS  PubMed  Google Scholar 

  36. Liles, W. C., Broxmeyer, H. E., Rodger, E., Wood, B., Hübel, K., Cooper, S., Hangoc, G., Bridger, G. J., Henson, G. W., Calandra, G., & Dale, D. C. (2003). Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood, 102(8), 2728–2730. https://doi.org/10.1182/blood-2003-02-0663

    Article  CAS  PubMed  Google Scholar 

  37. Christopherson, K. W., 2nd., Hangoc, G., Mantel, C. R., & Broxmeyer, H. E. (2004). Modulation of hematopoietic stem cell homing and engraftment by CD26. Science (New York, N.Y.), 305(5686), 1000–1003. https://doi.org/10.1126/science.1097071

    Article  CAS  Google Scholar 

  38. Liles, W. C., Rodger, E., Broxmeyer, H. E., Dehner, C., Badel, K., Calandra, G., Christensen, J., Wood, B., Price, T. H., & Dale, D. C. (2005). Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion, 45(3), 295–300. https://doi.org/10.1111/j.1537-2995.2005.04222.x

    Article  CAS  PubMed  Google Scholar 

  39. Broxmeyer, H. E., Hoggatt, J., O’Leary, H. A., Mantel, C., Chitteti, B. R., Cooper, S., Messina-Graham, S., Hangoc, G., Farag, S., Rohrabaugh, S. L., Ou, X., Speth, J., Pelus, L. M., Srour, E. F., & Campbell, T. B. (2012). Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nature Medicine, 18(12), 1786–1796. https://doi.org/10.1038/nm.2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sampson, T. R., Debelius, J. W., Thron, T., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nair, A. T., Ramachandran, V., Joghee, N. M., Antony, S., & Ramalingam, G. (2018). Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: A critical review. Journal of Neurogastroenterology and Motility, 24(1), 30–42. https://doi.org/10.5056/jnm17105

    Article  PubMed  PubMed Central  Google Scholar 

  42. Houser, M. C., & Tansey, M. G. (2017). The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Disease, 3, 3. https://doi.org/10.1038/s41531-016-0002-0

    Article  Google Scholar 

  43. Leblhuber, F., Ehrlich, D., Steiner, K., et al. (2021). The immunopathogenesis of Alzheimer’s disease is related to the composition of gut microbiota. Nutrients., 13(2), 361. https://doi.org/10.3390/nu13020361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koch, C. (2021). The brain electric. In: Scientific American (pp. 71–75).

  45. Khalili-Mahani, N., Rombouts, S. A., van Osch, M. J., et al. (2017). Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Human Brain Map**, 38(4), 2276–2325. https://doi.org/10.1002/hbm.23516

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hanna, R. N., & Hedrick, C. C. (2014). Stressing out stem cells: Linking stress and hematopoiesis in cardiovascular disease. Nature Medicine, 20(7), 707–708. https://doi.org/10.1038/nm.3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sapolsky, R. M. (2021). Taming stress. In: Scientific American. The science of stress (pp. 5–11).

  48. Arnsten, A., Mazure, C. M., & Sinha, R. (2021). This is your brain in meltdown. In: Scientific American. The science of stress (pp 12–17).

  49. Kwon, D. (2021). Fight or flight may be in our bones. In Scientific American. The science of stress (pp. 18–21).

  50. Bangasser, D.A.S. (2021). Stress. In Scientific American. The science of stress (pp. 22–32).

  51. Luo, Y., Chen, G. L., Hannemann, N., Ipseiz, N., Krönke, G., Bäuerle, T., Munos, L., Wirtz, S., Schett, G., & Bozec, A. (2015). Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metabolism, 22(5), 886–894. https://doi.org/10.1016/j.cmet.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  52. Josefsdottir, K. S., Baldridge, M. T., Kadmon, C. S., & King, K. Y. (2017). Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood, 129(6), 729–739. https://doi.org/10.1182/blood-2016-03-708594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iwamura, C., Bouladoux, N., Belkaid, Y., Sher, A., & Jankovic, D. (2017). Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood, 129(2), 171–176. https://doi.org/10.1182/blood-2016-06-723742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan, H., Baldridge, M. T., & King, K. Y. (2018). Hematopoiesis and the bacterial microbiome. Blood, 132(6), 559–564. https://doi.org/10.1182/blood-2018-02-832519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Staffas, A., Burgos da Silva, M., Slingerland, A. E., Lazrak, A., Bare, C. J., Holman, C. D., Docampo, M. D., Shono, Y., Durham, B., Pickard, A. J., Cross, J. R., Stein-Thoeringer, C., Velardi, E., Tsai, J. J., Jahn, L., Jay, H., Lieberman, S., Smith, O. M., Pamer, E. G., Peled, J. U., … van den Brink, M. (2018). Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. Cell Host & Microbe, 23(4), 447–457.e4. https://doi.org/10.1016/j.chom.2018.03.002.

  56. Farag, S. S., Srivastava, S., Messina-Graham, S., Schwartz, J., Robertson, M. J., Abonour, R., Cornetta, K., Wood, L., Secrest, A., Strother, R. M., Jones, D. R., & Broxmeyer, H. E. (2013). In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells and Development, 22(7), 1007–1015. https://doi.org/10.1089/scd.2012.0636

    Article  CAS  PubMed  Google Scholar 

  57. Farag, S. S., Nelson, R., Cairo, M. S., O’Leary, H. A., Zhang, S., Huntley, C., Delgado, D., Schwartz, J., Zaid, M. A., Abonour, R., Robertson, M., & Broxmeyer, H. (2017). High-dose sitagliptin for systemic inhibition of dipeptidylpeptidase-4 to enhance engraftment of single cord umbilical cord blood transplantation. Oncotarget, 8(66), 110350–110357. https://doi.org/10.18632/oncotarget.22739

    Article  PubMed  PubMed Central  Google Scholar 

  58. Farag, S. S., Abu Zaid, M., Schwartz, J. E., Thakrar, T. C., Blakley, A. J., Abonour, R., Robertson, M. J., Broxmeyer, H. E., & Zhang, S. (2021). Dipeptidyl peptidase 4 inhibition for prophylaxis of acute graft-versus-host disease. The New England Journal of Medicine, 384(1), 11–19. https://doi.org/10.1056/NEJMoa2027372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mantel, C. R., O’Leary, H. A., Chitteti, B. R., Huang, X., Cooper, S., Hangoc, G., Brustovetsky, N., Srour, E. F., Lee, M. R., Messina-Graham, S., Haas, D. M., Falah, N., Kapur, R., Pelus, L. M., Bardeesy, N., Fitamant, J., Ivan, M., Kim, K. S., & Broxmeyer, H. E. (2015). Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell, 161(7), 1553–1565. https://doi.org/10.1016/j.cell.2015.04.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aljoufi, A., Cooper, S., & Broxmeyer, H. E. (2020). Collection and processing of mobilized mouse peripheral blood at lowered oxygen tension yields enhanced numbers of hematopoietic stem cells. Stem cell reviews and reports, 16(5), 946–953. https://doi.org/10.1007/s12015-020-10021-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Capitano, M. L., Mohamad, S. F., Cooper, S., Guo, B., Huang, X., Gunawan, A. M., Sampson, C., Ropa, J., Srour, E. F., Orschell, C. M., & Broxmeyer, H. E. (2021). Mitigating oxygen stress enhances aged mouse hematopoietic stem cell numbers and function. The Journal of Clinical Investigation, 131(1), e140177. https://doi.org/10.1172/JCI140177

    Article  CAS  PubMed Central  Google Scholar 

  62. Broxmeyer, H. E., Liu, Y., Kapur, R., Orschell, C. M., Aljoufi, A., Ropa, J. P., Trinh, T., Burns, S., & Capitano, M. L. (2020). Fate of hematopoiesis during aging. What do we really know, and what are its implications? Stem Cell Reviews and Reports, 16(6), 1020–1048. https://doi.org/10.1007/s12015-020-10065-y

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wilczek, F. (2021). Fundamentals. Ten keys to reality. Chapter 5, page 134; and Chapter 6, page 148. Penguin Press, Random House.

    Google Scholar 

Download references

Acknowledgements

Much of the work done in the Broxmeyer lab was supported by the following US Public Health Grants to him: R35 HL139599 (Outstanding Investigator Award) and U54 DK106846 (Cooperative Center of Excellence in Hematology, CCEH). The first author would like to thank the Director of the New York Blood Center, Dr. Christopher Hillyer, for sending him the book: “When Einstein Walked with Gödel” as a thank you for consulting at the time for the New York Blood Center Research Program. It was the third chapter in the book that got Dr. Broxmeyer thinking about this present project.

Funding

Much of the work done in the Broxmeyer lab was supported by the following US Public Health Grants to him: R35 HL139599 (Outstanding Investigator Award) and U54 DK106846 (Cooperative Center of Excellence in Hematology, CCEH).

Author information

Authors and Affiliations

Authors

Contributions

All were involved in the preparation drafts and writing the commentary.

Corresponding author

Correspondence to Hal E. Broxmeyer.

Ethics declarations

Ethics Approval

N/A.

Consent to Participate

N/A.

Consent for Publication

The authors are alone responsible for the content and writing of the paper. All authors reviewed and approved the final version of the manuscript.

Conflicts of Interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broxmeyer, H.E., Yoder, K.K., Wu, YC. et al. The Brain: Is it a Next Frontier to Better Understand the Regulation and Control of Hematopoiesis for Future Modulation and Treatment?. Stem Cell Rev and Rep 17, 1083–1090 (2021). https://doi.org/10.1007/s12015-021-10203-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10203-0

Keywords

Navigation