Log in

Breaking Barriers: Nucleic Acid Aptamers in Gastrointestinal (GI) Cancers Therapy

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Conventional cancer therapies can have significant adverse effects as they are not targeted to cancer cells and may damage healthy cells. Single-stranded oligonucleotides assembled in a particular architecture, known as aptamers, enable them to attach selectively to target areas. Usually, they are created by Systematic Evolution of Ligand by Exponential enrichment (SELEX), and they go through a rigorous pharmacological revision process to change their therapeutic half-life, affinity, and specificity. They could thus offer a viable substitute for antibodies in the targeted cancer treatment market. Although aptamers can be a better choice in some situations, antibodies are still appropriate for many other uses. The technique of delivering aptamers is simple and reasonable, and the time needed to manufacture them is relatively brief. Aptamers do not require animals or an immune response to be produced, in contrast to antibodies. When used as a medication, aptamers can directly suppress tumor cells. As an alternative, they can be included in systems for targeted drug delivery that administer medications specifically to tumor cells while reducing toxicity to healthy cells. The most recent and cutting-edge methods for treating gastrointestinal (GI) tract cancer with aptamers will be covered in this review, with a focus on targeted therapy as a means of conquering resistance to traditional medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adachi, T. & Nakamura, Y. (2019). Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules (Basel, Switzerland), 24, 29–42.

    Article  Google Scholar 

  2. Byun, J. (2021). Recent Progress and Opportunities for Nucleic Acid Aptamers. Life (Basel, Switzerland), 11, 193.

    PubMed  Google Scholar 

  3. Yang, Y., Ren, X., Schluesener, H. J., & Zhang, Z. (2011). Aptamers: selection, modification and application to nervous system diseases. Current medicinal chemistry, 18, 4159–4168.

    Article  CAS  PubMed  Google Scholar 

  4. Yazdian-Robati, R., Arab, A., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2017). Application of aptamers in treatment and diagnosis of leukemia. International journal of pharmaceutics, 529, 44–54.

    Article  CAS  PubMed  Google Scholar 

  5. Emami, N., Pakchin, P. S., & Ferdousi, R. (2020). Computational predictive approaches for interaction and structure of aptamers. Journal of theoretical biology, 497, 110268.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, G., & Chen, X. (2018). Aptamer-based targeted therapy. Advanced drug delivery reviews, 134, 65–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanwar, J. R., Roy, K., & Kanwar, R. K. (2011). Chimeric aptamers in cancer cell-targeted drug delivery. Critical reviews in biochemistry and molecular biology, 46, 459–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kinghorn, A. B., Fraser, L. A., Lang, S., Shiu, S. C. C. & Tanner, J. A. (2017). Aptamer Bioinformatics. International journal of molecular sciences, 18, 2516.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kumar Kulabhusan, P., Hussain, B. & Yüce, M. (2020). Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics, 12, 646

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yan, A. C., & Levy, M. (2009). Aptamers and aptamer targeted delivery. RNA biology, 6, 316–320.

    Article  CAS  PubMed  Google Scholar 

  11. Nimjee, S. M., White, R. R., Becker, R. C., & Sullenger, B. A. (2017). Aptamers as Therapeutics. Annual review of pharmacology and toxicology, 57, 61–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Radom, F., Jurek, P. M., Mazurek, M. P., Otlewski, J., & Jeleń, F. (2013). Aptamers: molecules of great potential. Biotechnology advances, 31, 1260–1274.

    Article  CAS  PubMed  Google Scholar 

  13. Tan, Y., Ma, L., Yang, X., Cheng, Q. N., & Wu, J. F. (2023). Current Status and Challenges of Aptamers Screening and Optimization. Combinatorial chemistry & high throughput screening., 26, 1067–1082.

    Article  CAS  Google Scholar 

  14. Wu, Y. X., & Kwon, Y. J. (2016). Aptamers: The “evolution” of SELEX. Methods (San Diego, Calif), 106, 21–28.

    Article  CAS  PubMed  Google Scholar 

  15. Sullenger, B. A. (2016). Aptamers Coming of Age at Twenty-Five. Nucleic acid therapeutics, 26, 119.

    Article  CAS  PubMed  Google Scholar 

  16. Xu, Y., Yang, X., & Wang, E. (2010). Review: Aptamers in microfluidic chips. Analytica chimica acta, 683, 12–20.

    Article  CAS  PubMed  Google Scholar 

  17. Rozenblum, G. T., Lopez, V. G., Vitullo, A. D., & Radrizzani, M. (2016). Aptamers: current challenges and future prospects. Expert opinion on drug discovery, 11, 127–135.

    Article  CAS  PubMed  Google Scholar 

  18. Soldevilla, M. M., Hervas, S., Villanueva, H., Lozano, T., Rabal, O., & Oyarzabal, J., et al. (2017). Identification of LAG3 high affinity aptamers by HT-SELEX and Conserved Motif Accumulation (CMA). PloS one, 12, e0185169.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Saad, M., & Faucher, S. P. (2021). Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Frontiers in microbiology, 12, 643797.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schmitz, F. R. W., Valério, A., de Oliveira, D., & Hotza, D. (2020). An overview and future prospects on aptamers for food safety. Applied microbiology and biotechnology, 104, 6929–6939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santulli-Marotto, S., Nair, S. K., Rusconi, C., Sullenger, B. & Gilboa, EJCR. (2003). Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Research, 63, 7483–7489.

    CAS  PubMed  Google Scholar 

  22. Zhou, B., Mo, Z., Lai, G., Chen, X., Li, R., & Wu, R., et al. (2023). Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF-. Journal of experimental & clinical cancer research: CR, 42, 48.

    Article  CAS  PubMed Central  Google Scholar 

  23. Prodeus, A., Abdul-Wahid, A., Fischer, N. W., Huang, E. H., Cydzik, M., & Gariépy, J. (2015). Targeting the PD-1/PD-L1 Immune Evasion Axis With DNA Aptamers as a Novel Therapeutic Strategy for the Treatment of Disseminated Cancers. Molecular therapy Nucleic acids, 4, e237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gefen, T., Castro, I., Muharemagic, D., Puplampu-Dove, Y., Patel, S., & Gilboa, E. (2017). A TIM-3 Oligonucleotide Aptamer Enhances T Cell Functions and Potentiates Tumor Immunity in Mice. Molecular therapy: the journal of the American Society of Gene Therapy, 25, 2280–2288.

    Article  CAS  PubMed  Google Scholar 

  25. Gilboa, E., McNamara, 2nd, J., & Pastor, F. (2013). Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clinical cancer research: an official journal of the American Association for Cancer Research, 19, 1054–1062.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, G., Wilson, G., Hebbard, L., Duan, W., Liddle, C., & George, J., et al. (2016). Aptamers: A promising chemical antibody for cancer therapy. Oncotarget, 7, 13446–13463.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pratico, E. D., Sullenger, B. A., & Nair, S. K. (2013). Identification and characterization of an agonistic aptamer against the T cell costimulatory receptor, OX40. Nucleic acid therapeutics, 23, 35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pastor, F., Soldevilla, M. M., Villanueva, H., Kolonias, D., Inoges, S., & de Cerio, A. L., et al. (2013). CD28 aptamers as powerful immune response modulators. Molecular therapy Nucleic acids, 2, e98.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Massari, F., Santoni, M., Ciccarese, C., Santini, D., Alfieri, S., & Martignoni, G., et al. (2015). PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer treatment reviews, 41, 114–121.

    Article  CAS  PubMed  Google Scholar 

  30. Eder, J. P., Vande Woude, G. F., Boerner, S. A., & LoRusso, P. M. (2009). Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clinical cancer research: an official journal of the American Association for Cancer Research, 15, 2207–2214.

    Article  CAS  PubMed  Google Scholar 

  31. Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., & Ready, N. E., et al. (2015). Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. The New England journal of medicine, 373, 1627–1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goh, K. W., Stephen, A., Wu, Y. S., Sim, M. S., Batumalaie, K., & Gopinath, S. C. B., et al. (2023). Molecular Targets of Aptamers in Gastrointestinal Cancers: Cancer Detection, Therapeutic Applications, and Associated Mechanisms. J Cancer, 14, 2491–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, A., & Yang, S. (2015). Replacing antibodies with aptamers in lateral flow immunoassay. Biosensors & bioelectronics, 71, 230–242.

    Article  CAS  Google Scholar 

  34. Bayat, P., Nosrati, R., Alibolandi, M., Rafatpanah, H., Abnous, K., & Khedri, M., et al. (2018). SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie, 154, 132–155.

    Article  CAS  PubMed  Google Scholar 

  35. Marrazza G. (2017). Aptamer Sensors. Biosensors.7,5.

  36. Mattice, C. M., & DeRosa, M. C. (2015). Status and Prospects of Aptamers as Drug Components. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy, 29, 151–165.

    Article  CAS  PubMed  Google Scholar 

  37. Wu, L., Wang, Y., Xu, X., Liu, Y., Lin, B., & Zhang, M., et al. (2021). Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chemical reviews, 121, 12035–12105.

    Article  CAS  PubMed  Google Scholar 

  38. Gu, L., Zheng, J., Zhang, Y., Wang, D., & Liu, J. (2023). Capture-SELEX of DNA Aptamers for Sulforhodamine B and Fluorescein. Chemistry (Weinheim an der Bergstrasse, Germany), 29, e202302616.

    CAS  PubMed  Google Scholar 

  39. Ducongé, F. (2023). Improvement of Aptamers by High-Throughput Sequencing of Doped-SELEX. Methods in molecular biology (Clifton, NJ), 2570, 85–102.

    Article  Google Scholar 

  40. Dua, P., Kim, S., & Lee, D. K. (2008). Patents on SELEX and therapeutic aptamers. Recent patents on DNA & gene sequences., 2, 172–186.

    Article  CAS  Google Scholar 

  41. Gao, S., Zheng, X., Jiao, B., & Wang, L. (2016). Post-SELEX optimization of aptamers. Analytical and bioanalytical chemistry, 408, 4567–4573.

    Article  CAS  PubMed  Google Scholar 

  42. Zhong, Y., Zhao, J., Li, J., Liao, X., & Chen, F. (2020). Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Analytical biochemistry, 598, 113620.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, C., Feng, Z., Qin, H., Chen, L., Yan, M., & Li, L., et al. (2024). Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta, 266, 124998.

    Article  CAS  PubMed  Google Scholar 

  44. Kohlberger, M., & Gadermaier, G. (2022). SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnology and applied biochemistry, 69, 1771–1792.

    Article  CAS  PubMed  Google Scholar 

  45. Ye, M., Hu, J., Peng, M., Liu, J., Liu, J., & Liu, H., et al. (2012). Generating aptamers by cell-SELEX for applications in molecular medicine. International journal of molecular sciences, 13, 3341–3353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramezanpour, M., Daei, P., Tabarzad, M., Khanaki, K., Elmi, A., & Barati, M. (2019). Preliminary study on the effect of nucleolin specific aptamer–miRNA let-7d chimera on Janus kinase-2 expression level and activity in gastric cancer (MKN-45) cells. Molecular biology reports, 46, 207–215.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Y., Tan, J., Zhou, L., Shan, X., Liu, J., & Ma, Y. (2020). Synthesis and application of AS1411-functionalized gold nanoparticles for targeted therapy of gastric cancer. ACS omega, 5, 31227–31233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Breitsprecher, D., Schlinck, N., Witte, D., Duhr, S., Baaske, P., & Schubert, T. (2016). Aptamer Binding Studies Using MicroScale Thermophoresis. Methods in molecular biology (Clifton, NJ), 1380, 99–111.

    Article  CAS  Google Scholar 

  49. Minagawa, H., Onodera, K., Fujita, H., Sakamoto, T., Akitomi, J., & Kaneko, N., et al. (2017). Selection, Characterization and Application of Artificial DNA Aptamer Containing Appended Bases with Sub-nanomolar Affinity for a Salivary Biomarker. Scientific reports, 7, 42716.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Virgilio, A., Petraccone, L., Scuotto, M., Vellecco, V., Bucci, M., & Mayol, L., et al. (2014). 5-Hydroxymethyl-2’-deoxyuridine residues in the thrombin binding aptamer: investigating anticoagulant activity by making a tiny chemical modification. Chembiochem: a European journal of chemical biology, 15, 2427–2434.

    Article  CAS  PubMed  Google Scholar 

  51. Maio, G. E., Enweronye, O., Zumrut, H. E., Batool, S., Van, N. A. & Mallikaratchy, PRJC. (2017). Systematic optimization and modification of a DNA aptamer with 2'-O-methyl RNA analogues. Chemistry Select, 2, 2335–2340.

    CAS  PubMed  Google Scholar 

  52. Kasahara, Y., Kitadume, S., Morihiro, K., Kuwahara, M., Ozaki, H., & Sawai, H., et al. (2010). Effect of 3′-end cap** of aptamer with various 2’,4’-bridged nucleotides: Enzymatic post-modification toward a practical use of polyclonal aptamers. Bioorganic & medicinal chemistry letters, 20, 1626–1629.

    Article  CAS  Google Scholar 

  53. Mahmoudian, F., Ahmari, A., Shabani, S., Sadeghi, B., Fahimirad, S., & Fattahi, F. (2024). Aptamers as an approach to targeted cancer therapy. Cancer Cell Int, 24, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  54. **ang, D., Zheng, C., Zhou, S.-F., Qiao, S. & Tran, PH. et al. (2015). Superior performance of aptamer in tumor penetration over antibody: implication of aptamer-based theranostics in solid tumors. Theranostics, 5, 1083.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen A., Yang S. J. B. (2015). Bioelectronics. Replacing antibodies with aptamers in lateral flow immunoassay. Biosensors and bioelectronics, 71, 230–242.

  56. Crivianu-Gaita V., Thompson M. J. B. (2016). Bioelectronics. Aptamers, antibody scFv, and antibody Fab’fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosensors and Bioelectronics, 85, 32–45.

  57. Toh S. Y., Citartan M., Gopinath S. C., Tang T-HJB. (2015). Bioelectronics. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. 64, 392–403.

  58. Chen, K., Zhou, J., Shao, Z., Liu, J., Song, J. & Wang, R. et al. (2020). Aptamers as versatile molecular tools for antibody production monitoring and quality control. Journal of the American Chemical Society, 142, 12079–12086.

    Article  CAS  PubMed  Google Scholar 

  59. Li, L., Xu, S., Yan, H., Li, X., Yazd, H. S. & Li, X. et al. (2021). Nucleic acid aptamers for molecular diagnostics and therapeutics: advances and perspectives. Angewandte Chemie International Edition, 60, 2221–2231.

    Article  CAS  PubMed  Google Scholar 

  60. Han J., Gao L., Wang J., Wang JJJoC. (2020). Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. Journal of Cancer, 11, 6902.

  61. Graham, T. A., & Sottoriva, A. (2017). Measuring cancer evolution from the genome. The Journal of pathology, 241, 183–191.

    Article  PubMed  Google Scholar 

  62. Roy, P. S., & Saikia, B. J. (2016). Cancer and cure: A critical analysis. Indian journal of cancer, 53, 441–442.

    Article  CAS  PubMed  Google Scholar 

  63. Torre, L. A., Siegel, R. L., Ward, E. M., & Jemal, A. (2016). Global Cancer Incidence and Mortality Rates and Trends–An Update. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 25, 16–27.

    Article  Google Scholar 

  64. Camorani, S., Caliendo, A., Morrone, E., Agnello, L., Martini, M., & Cantile, M., et al. (2024). Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies. Journal of experimental & clinical cancer research : CR, 43, 92.

    Article  CAS  PubMed Central  Google Scholar 

  65. Cunha, P. D. S., de Miranda, M. C., de Melo, M. I. A., Ferreira, A. D. F., Barbosa, J. L., & Oliveira, J. A. C., et al. (2024). Selection of internalizing RNA aptamers into human breast cancer cells derived from primary sites. Journal of cellular biochemistry, 125, e30540.

    Article  CAS  PubMed  Google Scholar 

  66. Deng, M., Yang, H., Zhang, H., Li, C., Chen, J., & Tang, W., et al. (2024). Portable and Rapid Dual-Biomarker Detection Using Solution-Gated Graphene Field Transistors in the Accurate Diagnosis of Prostate Cancer. Advanced healthcare materials, 13, e2302117.

    Article  PubMed  Google Scholar 

  67. Bahreyni, A., Mohamud, Y., Ashraf Nouhegar, S., Zhang, J., & Luo, H. (2024). Synergistic Viro-chemoimmunotherapy in Breast Cancer Enabled by Bioengineered Immunostimulatory Exosomes and Dual-Targeted Coxsackievirus B3. ACS nano, 18, 4241–4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ben Moussa, F., Kutner, W., Beduk, T., Sena-Torralba, A., & Mostafavi, E. (2024). Electrochemical bio- and chemosensors for cancer biomarkers: Natural (with antibodies) versus biomimicking artificial (with aptamers and molecularly imprinted polymers) recognition. Talanta, 267, 125259.

    Article  PubMed  Google Scholar 

  69. Wen, J., Xue, L., Wei, Y., Liang, J., Jia, W., & Yong, T., et al. (2024). YTHDF2 Is a Therapeutic Target for HCC by Suppressing Immune Evasion and Angiogenesis Through ETV5/PD-L1/VEGFA Axis. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 11, e2307242.

    PubMed  Google Scholar 

  70. Wu, H., Lin, J., Ling, N., Zhang, Y., He, Y., & Qiu, L., et al. (2024). Functional Nucleic Acid-Based Immunomodulation for T Cell-Mediated Cancer Therapy. ACS nano, 18, 119–135.

    Article  CAS  PubMed  Google Scholar 

  71. **ang Y., Liu J., Chen J., **ao M., Pei H., Li L. (2024). MoS(2)-Based Sensor Array for Accurate Identification of Cancer Cells with Ensemble-Modified Aptamers. ACS applied materials & interfaces.16, 15861–15869.

  72. Kianpour, M., Huang, C. W., Vejvisithsakul, P. P., Wang, J. Y., Li, C. F., & Shiao, M. S., et al. (2023). Aptamer/doxorubicin-conjugated nanoparticles target membranous CEMIP2 in colorectal cancer. International journal of biological macromolecules, 245, 125510.

    Article  CAS  PubMed  Google Scholar 

  73. Natesh, J., Chandola, C., Meeran, S. M., & Neerathilingam, M. (2021). Targeted delivery of doxorubicin through CD44 aptamer to cancer cells. Therapeutic delivery, 12, 693–703.

    Article  CAS  PubMed  Google Scholar 

  74. Nelissen, F. H. T., Peeters, W. J. M., Roelofs, T. P., Nagelkerke, A., Span, P. N., Heus, H. A. (2021). Improving Breast Cancer Treatment Specificity Using Aptamers Obtained by 3D Cell-SELEX. Pharmaceuticals (Basel, Switzerland), 14, 349.

  75. Ding, D., Zhao, H., Wei, D., Yang, Q., Yang, C., & Wang, R., et al. (2023). The first-in-human whole-body dynamic pharmacokinetics study of Aptamer. Research, 6, 0126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Esawi, E., Alshaer, W., Mahmoud, I. S., Alqudah, D. A., Azab, B., Awidi, A. (2021). Aptamer-Aptamer Chimera for Targeted Delivery and ATP-Responsive Release of Doxorubicin into Cancer Cells. International journal of molecular sciences, 22, 12940.

  77. Futane, A., Jadhav, P., Mustafa, A. H., Srinivasan, A., & Narayanamurthy, V. (2024). Aptamer-functionalized MOFs and AI-driven strategies for early cancer diagnosis and therapeutics. Biotechnology letters, 46, 1–17.

    Article  CAS  PubMed  Google Scholar 

  78. Li, P., & Liu, Z. (2024). Glycan-specific molecularly imprinted polymers towards cancer diagnostics: merits, applications, and future perspectives. Chemical Society reviews, 53, 1870–1891.

    Article  CAS  PubMed  Google Scholar 

  79. Abnous, K., Danesh, N. M., Ramezani, M., Charbgoo, F., Bahreyni, A., & Taghdisi, S. M. (2018). Targeted delivery of doxorubicin to cancer cells by a cruciform DNA nanostructure composed of AS1411 and FOXM1 aptamers. Expert opinion on drug delivery, 15, 1045–1052.

    Article  CAS  PubMed  Google Scholar 

  80. Song, X., Ren, Y., Zhang, J., Wang, G., Han, X., & Zheng, W., et al. (2015). Targeted delivery of doxorubicin to breast cancer cells by aptamer functionalized DOTAP/DOPE liposomes. Oncology reports, 34, 1953–1960.

    Article  CAS  PubMed  Google Scholar 

  81. Yin, W., Pham, C. V., Wang, T., Al Shamaileh, H., Chowdhury, R., Patel S., et al. (2022). Inhibition of Autophagy Promotes the Elimination of Liver Cancer Stem Cells by CD133 Aptamer-Targeted Delivery of Doxorubicin. Biomolecules, 12, 1623.

  82. Li, Y., Liu, W., Xu, H., Zhou, Y., **e, W., & Guo, Y., et al. (2024). Aptamers combined with immune checkpoints for cancer detection and targeted therapy: A review. International journal of biological macromolecules, 262, 130032.

    Article  CAS  PubMed  Google Scholar 

  83. Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C., & Lordick, F. (2020). Gastric cancer. The Lancet, 396, 635–648.

    Article  CAS  Google Scholar 

  84. Joshi, S. S., & Badgwell, B. D. (2021). Current treatment and recent progress in gastric cancer. CA: a cancer journal for clinicians, 71, 264–279.

    PubMed  Google Scholar 

  85. Bie, L., Wang, Y., Jiang, F., **ao, Z., Zhang, L., & Wang, J. (2022). Insights into the binding mode of AS1411 aptamer to nucleolin. Frontiers in Molecular Biosciences, 9, 1025313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, H., Wang, J., Wang, H., Liang, J., Dong, J., & Bai, H., et al. (2022). Advances in the application of Let‑7 microRNAs in the diagnosis, treatment and prognosis of leukemia. Oncology Letters, 23, 1–8.

    Article  PubMed  Google Scholar 

  87. Wang, Y., Zhao, J., Chen, S., Li, D., Yang, J., & Zhao, X., et al. (2022). Let-7 as a promising target in aging and aging-related diseases: a promise or a pledge. Biomolecules, 12, 1070.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yan, J., Bhadane, R., Ran, M., Ma, X., Li, Y., & Zheng, D., et al. (2024). Development of Aptamer-DNAzyme based metal-nucleic acid frameworks for gastric cancer therapy. Nature Communications, 15, 3684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pan, Q., Law, C. O., Yung, M. M., Han, K., Pon, Y. L., & Lau, T. C. K. (2018). Novel RNA aptamers targeting gastrointestinal cancer biomarkers CEA, CA50 and CA72-4 with superior affinity and specificity. PLoS One, 13, e0198980.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sultana R., Badruddoza S. M., Afrin T., Sarkar A., Sarker S., Kundu R. R., et al. (2021). Serum CEA and CA 19-9 Level in Gastric Adenocarcinoma and Their Correlations with Histopathological Grading and Staging. Instruction to Authors, 40.

  91. Wu, J. (2021). The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. Journal of personalized medicine, 11, 771.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Angell, H. K., Bruni, D., Barrett, J. C., Herbst, R., & Galon, J. (2020). The immunoscore: colon cancer and beyond. Clinical cancer research, 26, 332–339.

    Article  CAS  PubMed  Google Scholar 

  93. Cong, Y., Cui, Y., Wang, S., Jiang, L., Cao, J., & Zhu, S., et al. (2020). Calcium-binding protein S100P promotes tumor progression but enhances chemosensitivity in breast cancer. Frontiers in oncology, 10, 566302.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Goh, K. W., Stephen, A., Wu, Y. S., Sim, M. S., Batumalaie, K., & Gopinath, S. C., et al. (2023). Molecular targets of aptamers in gastrointestinal cancers: Cancer detection, therapeutic applications, and associated mechanisms. Journal of Cancer, 14, 2491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sun, W., Luo, L., Fang, D., Tang, T., Ni, W., & Dai, B., et al. (2020). A novel DNA aptamer targeting S100P induces antitumor effects in colorectal cancer cells. Nucleic acid therapeutics, 30, 402–413.

    Article  CAS  PubMed  Google Scholar 

  96. Möller, A., & Lobb, R. J. (2020). The evolving translational potential of small extracellular vesicles in cancer. Nature Reviews Cancer, 20, 697–709.

    Article  PubMed  Google Scholar 

  97. YoungHyeon, K., Cha, B. S., Park, K. S. (2023). Discovery of a Unique DNA Aptamer Directed at Small Extracellular Vesicles Originating from Colorectal Cancer Cells, Envisioned for Diagnostic and Therapeutic Implementations. 326.

  98. Cha, B. S., Jang, Y. J., Lee, E. S., Kim, D. Y., Woo, J. S., & Son, J., et al. (2023). Development of a Novel DNA Aptamer Targeting Colorectal Cancer Cell‐Derived Small Extracellular Vesicles as a Potential Diagnostic and Therapeutic Agent. Advanced Healthcare Materials, 12, 2300854.

    Article  CAS  Google Scholar 

  99. Song, L., Hao, Y., Wang, C., Han, Y., Zhu, Y., & Feng, L., et al. (2022). Liposomal oxaliplatin prodrugs loaded with metformin potentiate immunotherapy for colorectal cancer. Journal of Controlled Release, 350, 922–932.

    Article  CAS  PubMed  Google Scholar 

  100. Dearmond, S. J., Qiu, Y., Sanchez, H., Spilman, P. R., Ninchak-Casey, A., & Alonso, D., et al. (1999). PrPc glycoform heterogeneity as a function of brain region: implications for selective targeting of neurons by prion strains. Journal of neuropathology and experimental neurology, 58, 1000–1009.

    Article  CAS  PubMed  Google Scholar 

  101. Go, G., Lee, C.-S., Yoon, Y. M., Lim, J. H., Kim, T. H., & Lee, S. H. (2021). Prpc aptamer conjugated–gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells. International Journal of Molecular Sciences, 22, 1976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lohlamoh, W., Soontornworajit, B., & Rotkrua, P. (2021). Anti-proliferative effect of doxorubicin-loaded AS1411 aptamer on colorectal cancer cell. Asian Pacific Journal of Cancer Prevention: APJCP, 22, 2209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu, H., Li, T., Du, Y., & Li, M. (2018). Pancreatic cancer: challenges and opportunities. BMC medicine, 16, 1–3.

    Article  Google Scholar 

  104. Pereira, N. P., & Corrêa, J. R. (2018). Pancreatic cancer: Treatment approaches and trends. J Cancer Metastasis Treat, 4, 10.20517.

    Article  Google Scholar 

  105. Jimeno, A., Tan, A. C., Coffa, J., Rajeshkumar, N., Kulesza, P., & Rubio-Viqueira, B., et al. (2008). Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer research, 68, 2841–2849.

    Article  CAS  PubMed  Google Scholar 

  106. Mahajan, U. M., Li, Q., Alnatsha, A., Maas, J., Orth, M., & Maier, S. H., et al. (2021). Tumor-specific delivery of 5-fluorouracil–incorporated epidermal growth factor receptor–targeted aptamers as an efficient treatment in pancreatic ductal adenocarcinoma models. Gastroenterology, 161, 996–1010.e1.

    Article  CAS  PubMed  Google Scholar 

  107. Heinemann, V. (2000). Gemcitabine: progress in the treatment of pancreatic cancer. Oncology, 60, 8–18.

    Article  CAS  Google Scholar 

  108. Hong, S. S., Lee, S., Lee, S. H., Kim, S., Kim, D., & Park, H., et al. (2022). Anticancer effect of locally applicable aptamer‐conjugated gemcitabine‐loaded atelocollagen patch in pancreatic cancer patient–derived xenograft models. Cancer Science, 113, 1752–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Choi, S. I., Lee, Y.-S., Lee, Y. M., Kim, H. J., Kim, W. J., & Jung, S., et al. (2023). Complexation of drug and hapten-conjugated aptamer with universal hapten antibody for pancreatic cancer treatment. Journal of Controlled Release, 360, 940–952.

    Article  CAS  PubMed  Google Scholar 

  110. Bengoechea-Alonso, M. T., & Ericsson, J. (2010). The ubiquitin ligase Fbxw7 controls adipocyte differentiation by targeting C/EBPα for degradation. Proceedings of the National Academy of Sciences, 107, 11817–11822.

    Article  CAS  Google Scholar 

  111. Zheng, L., Wang, L., Gan, J., & Zhang, H. (2014). RNA activation: promise as a new weapon against cancer. Cancer Letters, 355, 18–24.

    Article  CAS  PubMed  Google Scholar 

  112. Halama, N., Prüfer, U., Frömming, A., Beyer, D., Eulberg, D., & Jungnelius, J. U., et al. (2019). Phase I/II study with CXCL12 inhibitor NOX-A12 and pembrolizumab in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer. Annals of Oncology, 30, v231.

    Article  Google Scholar 

  113. Yoon, S., Huang, K.-W., Reebye, V., Mintz, P., Tien, Y.-W., & Lai, H.-S., et al. (2016). Targeted delivery of C/EBPα-saRNA by pancreatic ductal adenocarcinoma-specific RNA aptamers inhibits tumor growth in vivo. Molecular Therapy, 24, 1106–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ozakyol, A. (2017). Global epidemiology of hepatocellular carcinoma (HCC epidemiology). Journal of gastrointestinal cancer, 48, 238–240.

    Article  PubMed  Google Scholar 

  115. Iliaki, S., Beyaert, R., & Afonina, I. S. (2021). Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochemical pharmacology, 193, 114747.

    Article  CAS  PubMed  Google Scholar 

  116. Yu, X.-X., Ge, K.-L., Liu, N., Zhang, J.-Y., Xue, M.-L., Ge, Y.-L. (2020). Selection and characterization of a novel DNA aptamer, Apt-07S specific to hepatocellular carcinoma cells. Drug Design, Development Therapy, 14, 1535–1545.

  117. Ganesan, S., & Mehnert, J. (2020). Biomarkers for response to immune checkpoint blockade. Annual Review of Cancer Biology, 4, 331–351.

    Article  Google Scholar 

  118. Ott, P. A., Hodi, F. S., & Robert, C. (2013). CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clinical cancer research, 19, 5300–5309.

    Article  CAS  PubMed  Google Scholar 

  119. Du, Y., Zhang, D., Wang, Y., Wu, M., Zhang, C., & Zheng, Y., et al. (2021). A highly stable multifunctional aptamer for enhancing antitumor immunity against hepatocellular carcinoma by blocking dual immune checkpoints. Biomaterials Science, 9, 4159–4168.

    Article  CAS  PubMed  Google Scholar 

  120. Chakraborty, S., Dlie, Z. Y., Chakraborty, S., Roy, S., Mukherjee, B., & Besra, S. E., et al. (2020). Aptamer-functionalized drug nanocarrier improves hepatocellular carcinoma toward normal by targeting neoplastic hepatocytes. Molecular Therapy-Nucleic Acids, 20, 34–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, L., Zhou, L., Zhang, H., Zhang, Y., Li, L., & **e, T., et al. (2021). Development of a DNA aptamer against multidrug-resistant hepatocellular carcinoma for in vivo imaging. ACS Applied Materials & Interfaces, 13, 54656–54664.

    Article  CAS  Google Scholar 

  122. Huang, B. T., Lai, W. Y., Chang, Y. C., Wang, J. W., Yeh, S. D., & Lin, E. P., et al. (2017). A CTLA-4 Antagonizing DNA Aptamer with Antitumor Effect. Molecular therapy Nucleic acids, 8, 520–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Herrmann, A., Priceman, S. J., Swiderski, P., Kujawski, M., **n, H., & Cherryholmes, G. A., et al. (2014). CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. The Journal of clinical investigation, 124, 2977–2987.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Santulli-Marotto, S., Nair, S. K., Rusconi, C., Sullenger, B., & Gilboa, E. (2003). Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer research, 63, 7483–7489.

    CAS  PubMed  Google Scholar 

  125. Lai, W. Y., Huang, B. T., Wang, J. W., Lin, P. Y., & Yang, P. C. (2016). A Novel PD-L1-targeting Antagonistic DNA Aptamer With Antitumor Effects. Molecular therapy Nucleic acids, 5, e397.

    Article  CAS  PubMed  Google Scholar 

  126. Schrand, B., Berezhnoy, A., Brenneman, R., Williams, A., Levay, A., & Kong, L. Y., et al. (2014). Targeting 4-1BB costimulation to the tumor stroma with bispecific aptamer conjugates enhances the therapeutic index of tumor immunotherapy. Cancer immunology research, 2, 867–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. An, Y., Li, X., Yao, F., Duan, J. & Yang, X. D. (2022). Novel Complex of PD-L1 Aptamer and Albumin Enhances Antitumor Efficacy In Vivo. Molecules (Basel, Switzerland), 27, 1482.

    Article  PubMed  Google Scholar 

  128. McNamara, J. O., Kolonias, D., Pastor, F., Mittler, R. S., Chen, L., & Giangrande, P. H., et al. (2008). Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. The Journal of clinical investigation, 118, 376–386.

    Article  CAS  PubMed  Google Scholar 

  129. Soldevilla, M. M., Villanueva, H., Bendandi, M., Inoges, S., López-Díaz de Cerio, A., & Pastor, F. (2015). 2-fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials, 67, 274–285.

    Article  CAS  PubMed  Google Scholar 

  130. Takahashi, M., Hashimoto, Y., & Nakamura, Y. (2022). Anti-TGF-β1 aptamer enhances therapeutic effect of tyrosine kinase inhibitor, gefitinib, on non-small cell lung cancer in xenograft model. Molecular therapy Nucleic acids, 29, 969–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

"E.F, S.V and A.H. wrote the main manuscript text and F.M, M.K and A.Z prepared figures 1 and Tables. M.D, M.S and A.H reviewed the final version. H.U. supervision. All authors reviewed the manuscript."

Corresponding author

Correspondence to Herlina Uinarni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uinarni, H., Oghenemaro, E.F., Menon, S.V. et al. Breaking Barriers: Nucleic Acid Aptamers in Gastrointestinal (GI) Cancers Therapy. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01367-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01367-w

Keywords

Navigation