Log in

Modelling Cross Talk in the Spatiotemporal System Dynamics of Calcium, IP3 and Nitric Oxide in Neuron Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The bioenergetic system of calcium ([Ca2+]), inositol 1, 4, 5-trisphophate (IP3) and nitric oxide (NO) regulate the diverse mechanisms in neurons. The dysregulation in any or all of the calcium, IP3 and nitric oxide dynamics may cause neurotoxicity and cell death. Few studies are noted in the literature on the interactions of two systems like [Ca2+] with IP3 and [Ca2+] with nitric oxide in neuron cells, which gives limited insights into regulatory and dysregulatory processes in neuron cells. But, no study is available on the cross talk in dynamics of three systems [Ca2+], IP3 and NO in neurons. Thus, the cross talk in the system dynamics of [Ca2+], IP3 and NO regulation processes in neurons have been studied using mathematical model. The two-way feedback process between [Ca2+] and IP3 and two-way feedback process between [Ca2+] and NO through cyclic guanosine monophosphate (cGMP) with plasmalemmal [Ca2+]-ATPase (PMCA) have been incorporated in the proposed model. This coupling handles the indirect two-way feedback process between IP3 and nitric oxide in neuronal cells automatically. The numerical outcomes were acquired by employing the finite element method (FEM) with the Crank-Nicholson scheme (CNS). The present model incorporating the sodium-calcium exchanger (NCX) and voltage-gated calcium channel (VGCC) provides novel insights into the various regulatory and dysregulatory processes due to buffer, IP3-receptor, ryanodine receptor, cGMP kinetics through PMCA channel, etc. and their impacts on the interactive spatiotemporal system dynamics of [Ca2+], IP3 and NO in neurons. It is concluded that the behavior of different crucial mechanisms is quite different for interactions of two systems of [Ca2+] and NO and the interactions of three systems of [Ca2+], IP3 and nitric oxide in neuronal cell due to mutual regulatory adjustments. The association of several neurological disorders with the alterations in calcium, IP3 and NO has been explored in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data exchange/sharing does not apply to the present manuscript.

References

  1. Garthwaite, J. (1991). Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci, 14, 60–7.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed, Z., & Connor, J. A. (1988). Calcium regulation by and buffer capacity of molluscan neurons during calcium transients. Cell Calcium, 9, 57–69.

    Article  CAS  PubMed  Google Scholar 

  3. Bootman, M. D., & Berridge, M. J. (1995). The elemental principles of calcium signaling. Cell, 83, 675–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wagner, J., & Keizer, J. (1994). Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J., 67, 447–56.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith, G. D., Wagner, J., & Keizer, J. (1996). Validity of the rapid buffering approximation near a point source of calcium ions. Biophys. J., 70, 2527–39.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sneyd, J., Girard, S., & Clapham, D. (1993). Calcium wave propagation by calcium-induced calcium release: an unusual excitable system. Bull. Math. Biol., 55, 315–44.

    Article  CAS  PubMed  Google Scholar 

  7. Falcke, M. (2003). Buffers and oscillations in intracellular Ca2+ dynamics. Biophys. J., 84, 28–41.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egelman, D. M., & Montague, P. R. (1999). Calcium dynamics in the extracellular space of mammalian neural tissue. Biophys. J, 76, 1856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brini, M., Calì, T., Ottolini, D., & Carafoli, E. (2014). Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci., 71, 2787–814.

    Article  CAS  PubMed  Google Scholar 

  10. Pathak, K., & Adlakha, N. (2016). Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes. Alexandria J. Med, 52, 261–8.

    Article  Google Scholar 

  11. Singh, N & N Adlakha, (2019). A mathematical model for interdependent calcium and inositol 1, 4,5-trisphosphate in cardiac myocyte. Netw. Model. Anal. Heal. Informatics Bioinforma., 8.

  12. Singh, N., & Adlakha, N. (2019). Nonlinear dynamic modeling of 2-dimensional interdependent Calcium and Inositol 1,4,5-Trisphosphate in cardiac myocyte. Math. Biol. Bioinforma., 14, 290–305.

    Article  CAS  Google Scholar 

  13. Kotwani, M., Adlakha, N., & Mehta, M. N. (2014). Finite element model to study the effect of buffers, source amplitude and source geometry on spatio-temporal calcium distribution in fibroblast cell. J. Med. Imaging Heal. Informatics, 4, 840–7.

    Article  Google Scholar 

  14. Kothiya, A. B., & Adlakha, N. (2023). Cellular nitric oxide synthesis is affected by disorders in the interdependent Ca2+ and IP3 dynamics during cystic fibrosis disease. J. Biol. Phys., 49, 133–58.

    Article  CAS  PubMed  Google Scholar 

  15. Kothiya, A. B., & Adlakha, N. (2023). Simulation of biochemical dynamics of Ca2+ and PLC in fibroblast cell. J. Bioenerg. Biomembr., 55, 267–87.

    Article  CAS  PubMed  Google Scholar 

  16. Jha, B. K., Adlakha, N., & Mehta, M. N. (2013). Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Int. J. Model. Simulation, Sci. Comput., 4.

  17. Jha, B. K., Adlakha, N., & Mehta, M. N. (2014). Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int. J. Biomath., 7, 1–11.

    Article  MathSciNet  Google Scholar 

  18. Bhardwaj, H., & Adlakha, N. (2022). Radial Basis Function Based Differential Quadrature Approach to Study Reaction Diffusion of Ca 2+ in T Lymphocyte. Int. J. Comput. Methods., 20.

  19. Bhardwaj, H., & Adlakha, N. (2023). Model To Study Interdependent Calcium And IP3 Distribution Regulating NFAT Production in T Lymphocyte. J. Mech. Med. Biol.

  20. Tewari, S. G., & Pardasani, K. R. (2010). Finite element model to study two dimensional unsteady state cytosolic calcium diffusion in presence of excess buffers. IAENG Int. J. Appl. Math., 40, 1–5.

    MathSciNet  Google Scholar 

  21. Tewari, S. G., & Pardasani, K. R. (2012). Modeling effect of sodium pump on calcium oscillations in neuron cells. J. Multiscale Model., 04, 1250010.

    Article  MathSciNet  Google Scholar 

  22. Tripathi, A., & Adlakha, N. (2012). Two dimensional coaxial circular elements in FEM to study calcium diffusion in neuron cells. Appl. Math. Sci., 6, 455–66.

    Google Scholar 

  23. Tripathi, A., & Adlakha, N. (2011). Closed form solution to problem of calcium diffusion in cylindrical shaped neuron cell. World Acad. Sci. Eng. Technol., 80, 739–42.

    Google Scholar 

  24. Pawar, A., & Pardasani, K. R. (2023). Computational model of calcium dynamics-dependent dopamine regulation and dysregulation in a dopaminergic neuron cell. Eur. Phys. J. Plus, 138, 30.

    Article  Google Scholar 

  25. Pawar, A., & Pardasani, K. R. (2022). Simulation of disturbances in interdependent calcium and β-amyloid dynamics in the nerve cell. Eur. Phys. J. Plus, 137, 1–23.

    Article  Google Scholar 

  26. Pawar, A., & Pardasani, K. R. (2023). Fractional order interdependent nonlinear chaotic spatiotemporal calcium and Aβ dynamics in a neuron cell. Phys. Scr., 98, 085206.

    Article  ADS  Google Scholar 

  27. Jagtap, Y., & Adlakha, N. (2018). Finite volume simulation of two dimensional calcium dynamics in a hepatocyte cell involving buffers and fluxes. Commun. Math. Biol. Neurosci., 2018, 1–16.

    Google Scholar 

  28. Mishra, V., & Adlakha, N. (2023). Numerical simulation of calcium dynamics dependent ATP degradation, IP3 and NADH production due to obesity in a hepatocyte cell. J. Biol. Phys., 49, 415–42.

    Article  CAS  PubMed  Google Scholar 

  29. Mishra, V., & Adlakha, N. (2023). Spatio temporal interdependent calcium and buffer dynamics regulating DAG in a hepatocyte cell due to obesity. J. Bioenerg. Biomembr., 55, 249–66.

    Article  CAS  PubMed  Google Scholar 

  30. Manhas, N., & Pardasani, K. R. (2014). Mathematical model to study IP3 Dynamics dependent calcium oscillations in pancreatic acinar cells. J. Med. Imaging Heal. Informatics, 4, 874–80.

    Article  Google Scholar 

  31. Manhas, N., & Pardasani, K. R. (2014). Modelling mechanism of calcium oscillations in pancreatic acinar cells. J. Bioenerg. Biomembr., 46, 403–20.

    Article  CAS  PubMed  Google Scholar 

  32. Vaishali, N., & Adlakha, J. (2023). Disturbances in system dynamics of Ca2+ and IP3 perturbing insulin secretion in a pancreatic β -cell due to type-2 diabetes. Bioenerg. Biomembr., 55, 151–67.

    Article  CAS  Google Scholar 

  33. Naik, P. A., & Pardasani, K. R. (2018). 2D finite-element analysis of calcium distribution in oocytes. Netw. Model. Anal. Heal. Informatics Bioinforma., 7, 1–11.

    Google Scholar 

  34. Naik, P. A., & Pardasani, K. R. (2019). Three-Dimensional Finite Element Model to Study Effect of RyR Calcium Channel, ER Leak and SERCA Pump on Calcium Distribution in Oocyte Cell. Int. J. Comput. Methods, 16, 1–19.

    Article  MathSciNet  Google Scholar 

  35. Joshi, H., & Jha, B. K. (2021). On a reaction–diffusion model for calcium dynamics in neurons with Mittag–Leffler memory. Eur. Phys. J. Plus, 136, 623.

    Article  CAS  Google Scholar 

  36. Dave, D. D., & Jha, B. K. (2021). Mathematical modeling of calcium oscillatory patterns in a neuron. Interdiscip. Sci. Comput. Life Sci., 13, 12–24.

    Article  CAS  Google Scholar 

  37. Michell, R. H. (1975). Inositol phospholipids and cell surface receptor function. BBA - Rev. Biomembr., 415, 81–47.

    CAS  Google Scholar 

  38. Berridge, M. J., & Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312, 315–21.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 1, 11–21.

    Article  CAS  PubMed  Google Scholar 

  40. Bezprozvanny, I., Watras, J., & Ehrlich, B. E. (1991). Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature, 351, 751–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Allbritton, N. L., Meyer, T., & Stryer, L. (1992). Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science, 258, 1812–5.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Young, G. W. D. E., & Keizer, J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Biophysics, 89, 9895–9.

    Google Scholar 

  43. Li, Y. X., & Rinzel, J. (1994). Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol., 166, 461–73.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Falcke, M., Huerta, R., Rabinovich, M. I., Abarbanel, H. D. I., Elson, R. C., & Selverston, A. I. (2000). Modeling observed chaotic oscillations in bursting neurons: the role of calcium dynamics and IP3. Biol. Cybern., 82, 517–27.

    Article  CAS  PubMed  Google Scholar 

  45. Emilsson, L., Saetre, P., & Jazin, E. (2006). Alzheimer’s disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signaling. Neurobiol. Dis., 21, 618–25.

    Article  CAS  PubMed  Google Scholar 

  46. Jagtap, Y., & Adlakha, N. (2019). Numerical study of one-dimensional buffered advection–diffusion of calcium and IP 3 in a hepatocyte cell. Netw. Model. Anal. Heal. Informatics Bioinforma., 8, 1–9.

    Google Scholar 

  47. Pawar, A., & Pardasani, K. R. (2022). Effects of disorders in interdependent calcium and IP3 dynamics on nitric oxide production in a neuron cell. Eur. Phys. J. Plus, 137, 543.

    Article  CAS  Google Scholar 

  48. Pawar, A., & Pardasani, K. R. (2022). Effect of disturbances in neuronal calcium and IP3 dynamics on β-amyloid production and degradation. Cogn. Neurodynamics, 17, 239–56.

    Article  Google Scholar 

  49. Pawar, A., & Pardasani, K. R. (2023). Mechanistic insights of neuronal calcium and IP 3 signaling system regulating ATP release during ischemia in progression of Alzheimer’s disease. Eur. Biophys. J., 52, 153–73.

    Article  CAS  PubMed  Google Scholar 

  50. Salter, M., & Knowles, G. (1991). Widespread tissue distribution, species distribution and changes in activity of Ca(2+)-dependent and Ca(2+)-independent nitric oxide synthases. FEBS Lett., 291, 145–9.

    Article  CAS  PubMed  Google Scholar 

  51. Garthwaite, J., Garthwaite, G., Palmer, R. M. J., & Moncada, S. (1989). NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J. Pharmacol. Mol. Pharmacol., 172, 413–6.

    Article  CAS  Google Scholar 

  52. Wood, P. L., Emmett, M. R., Rao, T. S., Cler, J., Mick, S., & Iyengar, S. (1990). Inhibition of nitric oxide synthase blocks N-methyl-D-aspartate-, quisqualate-, kainate-, harmaline-, and pentylenetetrazole-dependent increases in cerebellar cyclic GMP in vivo. J. Neurochem., 55, 346–8.

    Article  CAS  PubMed  Google Scholar 

  53. Vincent, S. R., & Neurobiol, Prog (2010). Nitric oxide neurons and neurotransmission. Prog. Neurobiol., 90, 246–55.

    Article  CAS  PubMed  Google Scholar 

  54. Kohlmeier, K. A., & Leonard, C. S. (2006). Transmitter modulation of spike-evoked calcium transients in arousal related neurons: muscarinic inhibition of SNX-482-sensitive calcium influx. Eur. J. Neurosci., 23, 1151–62.

    Article  PubMed  Google Scholar 

  55. Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., & Cohen, R. A. (1994). Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature, 368, 850–3.

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Kourosh-Arami, M., Hosseini, N., Mohsenzadegan, M., Komaki, A., & Joghataei, M. T. (2020). Neurophysiologic implications of neuronal nitric oxide synthase. Rev. Neurosci., 31, 617–36.

    Article  CAS  PubMed  Google Scholar 

  57. Brenman, J. E., **a, H., Chao, D. S., Black, S. M., & Bredt, D. S. (1997). Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev. Neurosci., 19, 224–31.

    Article  CAS  PubMed  Google Scholar 

  58. Iino, M. (2006). Ca2+-dependent inositol 1,4,5-trisphosphate and nitric oxide signaling in cerebellar neurons. J. Pharmacol. Sci., 100, 538–44.

    Article  CAS  PubMed  Google Scholar 

  59. Chung, J. W., Ryu, W. S., Kim, B. J., & Yoon, B. W. (2015). Elevated calcium after acute ischemic stroke: association with a poor short-term outcome and long-term mortality. J. Stroke, 17, 54–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Moro, M. A., Cárdenas, A., Hurtado, O., Leza, J. C., & Lizasoain, I. (2004). Role of nitric oxide after brain ischaemia. Cell Calcium, 36, 265–75.

    Article  CAS  PubMed  Google Scholar 

  61. Gibson W. G, Farnell L., & Bennett M. R. (2007). A computational model relating changes in cerebral blood volume to synaptic activity in neurons, 70, 1674-79.

  62. Mo, E., Amin, H., Bianco, I. H., & Garthwaite, J. (2004). Kinetics of a cellular nitric oxide/cGMP/phosphodiesterase-5 pathway. J. Biol. Chem., 279, 26149–58.

    Article  CAS  PubMed  Google Scholar 

  63. Sriram, K., Laughlin, J. G., Rangamani, P., & Tartakovsky, D. M. (2016). Shear-induced nitric oxide production by endothelial cells. Biophys. J., 111, 208–21.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pawar, A., & Pardasani, K. R. (2022). Study of disorders in regulatory spatiotemporal neurodynamics of calcium and nitric oxide. Cogn. Neurodyn., 17, 1661–82.

    Article  PubMed  Google Scholar 

  65. Kothiya A., & Adlakha N. (2023). Impact of Interdependent C a 2+ and I P 3 Dynamics On ATP Regulation in A Fibroblast Model Cell. Biochem. Biophys., 1-17.

  66. Wagner, J., Fall, C. F., Hong, F., Sims, C. E., Allbritton, N. L., Fontanilla, R. A., Moraru, I. I., Loew, L. M., & Nuccitelli, R. (2004). A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support. Cell Calcium, 35, 433–47.

    Article  CAS  PubMed  Google Scholar 

  67. J Keener and J Sneyd, Mathematical Physiology, Second Edi (Springer. https://doi.org/10.1007/978-0-387-75847-3, 2009).

  68. Tewari S., & Pardasani K. R. (2008). Finite Difference Model to Study the Effects of Na+ Influx on Cytosolic [Ca2+] Diffusion. World Acad. Sci. Eng. Technol., 670-75.

  69. Panday, S., & Pardasani, K. R. (2013). Finite element model to study effect of advection diffusion and Na +/Ca2+ exchanger on Ca2+ distribution in oocytes. J. Med. Imaging Heal. Informatics, 3, 374–79.

    Article  Google Scholar 

  70. Nelson D. L., & Cox M. M. (2005). Lehninger Principles of Biochemistry. Fourth Ed.

  71. Bugrim, A., Fontanilla, R., Eutenier, B. B., Keizer, J., & Nuccitelli, R. (2003). Sperm initiate a Ca2+ wave in frog eggs that is more similar to Ca2+ waves initiated by IP3 than by Ca2+. Biophys. J., 84, 1580–90.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Condorelli, P., & George, S. C. (2001). In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis. Biophys. J., 80, 2110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith, G. D. (1996). Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. Biophys. J., 71, 3064–72.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brown, S. A., Morgan, F., Watras, J., & Loew, L. M. (2008). Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys. J., 95, 1795–812.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Edwards, A., Cao, C., & Pallone, T. L. (2011). Cellular mechanisms underlying nitric oxide-induced vasodilation of descending vasa recta. Am. J. Physiol. - Ren. Physiol., 300, 441–56.

    Article  Google Scholar 

  76. Kavdia, M., Tsoukias, N. M., & Popel, A. S. (2002). Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitutes. Am. J. Physiol. - Hear. Circ. Physiol., 282, 2245–53.

    Article  Google Scholar 

  77. Öziş, T., Aksan, E. N., & Özdeş, A. (2003). A finite element approach for solution of Burgers’ equation. Appl. Math. Comput., 139, 417–28.

    MathSciNet  Google Scholar 

Download references

Author contributions:

Both authors made equal contributions to the current study regarding the formulation of the problem and its solution, correction of data, review of relevant literature, and interpretations of the outcomes. The MATLAB code is created by Author (1).

Funding

There is no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anand Pawar or Kamal Raj Pardasani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, A., Pardasani, K.R. Modelling Cross Talk in the Spatiotemporal System Dynamics of Calcium, IP3 and Nitric Oxide in Neuron Cells. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01229-5

Keywords

Navigation