Log in

Glycan analysis of Lamin A/C protein at G2/M and S phases of the cell cycle

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

During mitosis, phosphorylation and dephosphorylation of lamins triggers the nuclear envelope disassembly/assembly. However, it hasn’t been known whether lamin proteins undergo any modification other than phosphorylation during the cell cycle. Glycosylation of lamin proteins is one of the less studied post-translational modification. Glycosylation and phosphorylation compete for the same positions and interplay between two modifications generate a post-translational code in the cell. Based on this, we hypothesized that glycosylation of lamin A/C protein may be important in the regulation of the structural organization of the nuclear lamina during interphase and mitosis. We analysed the glycan units of lamin A/C protein in lung carcinoma cells synchronized at G2/M and S phases via CapLC-ESI-MS/MS. Besides, the outermost glycan units were determined using lectin blotting and gold-conjugated antibody and lectin staining. TEM studies also allowed us to observe the localization of glycosylated lamin A/C protein. With this study, we determined that lamin A/C protein shows O-glycosylation at G2/M and S phases of the cell cycle. In addition to O-GlcNAcylation and O-GalNAcylation, lamin A/C is found to be contain Gal, Fuc, Man, and Sia sugars at G2/M and S phases for the first time. Having found the glycan units of the lamin A/C protein suggests that glycosylation might have a role in the nuclear organization during the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simon, D. N., & Wilson, K. L. (2013). Partners and post-translational modifications of nuclear lamins. Chromosoma, 122, 13–31. https://doi.org/10.1007/s00412-013-0399-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gruenbaum, Y., & Medalia, O. (2015). Lamins: the structure and protein complexes. Current Opinion in Cell Biology, 32, 7–12. https://doi.org/10.1016/j.ceb.2014.09.009.

    Article  CAS  PubMed  Google Scholar 

  3. Lin, F., & Worman, H. J. (1993). Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem., 268(22), 16321–16326. https://doi.org/10.1016/S0021-9258(19)85424-8.

    Article  CAS  PubMed  Google Scholar 

  4. Dechat, T., Adam, S. A., Taimen, P., Shimi, T., & Goldman, R. D. (2010). Nuclear lamins. Cold Spring Harb. Perspect. Biol., 2, 1–22. https://doi.org/10.1101/cshperspect.a000547.

    Article  CAS  Google Scholar 

  5. Dittmer, T., & Misteli, T. (2011). The lamin protein family. Genome Biology, 12, 222 https://doi.org/10.1186/gb-2011-12-5-222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fawcett, D. W. (1966). On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. American Journal of Anatomy, 119(1), 129–145. https://doi.org/10.1002/aja.1001190108.

    Article  CAS  PubMed  Google Scholar 

  7. Gruenbaum, Y., Goldman, R. D., Meyuhas, R., Mills, E., Margalit, A., Fridkin, A., Dayani, Y., Prokocimer, M., & Enosh, A. (2003). The Nuclear lamina and its functions in the nucleus. Int. Review of Cytology, 226, 1–62. https://doi.org/10.1016/s0074-7696(03)01001-5.

    Article  CAS  Google Scholar 

  8. Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D. K., Solimando, L., & Goldman, R. D. (2008). Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes&Development, 22, 832–853. https://doi.org/10.1101/gad.1652708.

    Article  CAS  Google Scholar 

  9. Prokocimer, M., Davidovich, M., Nissim-rafinia, M., Wiesel-motiuk, N., Bar, D. Z., Barkan, R., Meshorer, E., & Gruenbaum, Y. (2009). Nuclear lamins: key regulators of nuclear structure and activities. J. Cell Mol. Med., 13(6), 1059–1085. https://doi.org/10.1111/j.1582-4934.2008.00676.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ho, C. Y., & Lammberding, J. (2012). Lamins at a glance. Journal of Cell Science, 125, 2087–2093. https://doi.org/10.1242/jcs.087288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilson, K. L., & Foisner, R. (2010). Lamin-binding proteins. Cold Spring Harb. Perspect. Biol., 2, a000554 https://doi.org/10.1101/cshperspect.a000554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murray-Nerger, L. A., & Cristea, I. M. (2021). Lamin post-translational modifications: emerging toggles of nuclear organization and function. Trends in Biochem. Sci, 46(10), 832–847. https://doi.org/10.1016/j.tibs.2021.05.007.

    Article  CAS  Google Scholar 

  13. Gerace, L., & Blobel, G. (1980). The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell, 19(1), 277–287. https://doi.org/10.1016/0092-8674(80)90409-2.

    Article  CAS  PubMed  Google Scholar 

  14. Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K., Walter P. (2015) Molecular Biology of The Cell, sixth ed., Garland Science, USA.

  15. Mitra, N., Sinha, S., Ramya, T. N., & Surolia, A. (2006). N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem. Sci., 31, 156–163. https://doi.org/10.1016/j.tibs.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  16. Hart, G. W., Kreppel, L. K., Comer, F. I., Arnold, C. S., Snow, D. M., Ye, Z., & Akimoto, Y. (1996). O-GlcNAcylation of key nuclear and cytoskeletal proteins: reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology, 6(7), 711–716. https://doi.org/10.1093/glycob/6.7.711.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, X., & Hart, G. W. (2001). Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor β post-translational regulation of turnover and transactivation activity. J. Biol. Chem, 276(13), 10570–10575. https://doi.org/10.1074/jbc.M010411200.

    Article  CAS  PubMed  Google Scholar 

  18. Comer, F. I., & Hart, G. W. (2001). Reciprocity between O-GlcNAc and O-phospate on the carboxyl terminal domain of RNA polymerase II. Biochemistry, 40, 7845–7852. https://doi.org/10.1021/bi0027480.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor M. E., Drickamer K. (2003) Introduction to Glycobiology, second ed., Oxford: University Press, UK.

  20. Hardivillé, S., & Hart, G. W. (2014). Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell metabolism, 20(2), 208–213. https://doi.org/10.1016/j.cmet.2014.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  22. Burnette, W. N. (1981). “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem., 112(2), 195–203. https://doi.org/10.1016/0003-2697(81)90281-5.

    Article  CAS  PubMed  Google Scholar 

  23. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856–2860. https://doi.org/10.1038/nprot.2006.468.

    Article  CAS  PubMed  Google Scholar 

  24. İzzetoğlu, S., Şahar, U., Şener, E., & Deveci, R. (2014). Determination of sialic acids in ımmune system cells (coelomocytes) of sea urchin, Paracentrotus lividus, using capillary LC-ESI-MS/MS. Fish&Shellfish Immunology, 36, 181–186. https://doi.org/10.1016/j.fsi.2013.10.029.

    Article  CAS  Google Scholar 

  25. Şener, E., & Deveci, R. (2015). Determining the monosaccharides of the sea urchin (Paracentrotus lividus) coelomocytes via the CapLC-ESI-MS/MS system and the lectin histochemistry. Fish&Shellfish Immunology, 42(1), 34–40. https://doi.org/10.1016/j.fsi.2014.10.020.

    Article  CAS  Google Scholar 

  26. Şahar, U., & Deveci, R. (2017). Profiling N-glycans of the egg jelly coat of the sea urchin Paracentrotus lividus by MALDI-TOF mass spectrometry and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectrometry systems. Mol. Reprod. Dev., 84, 401–407. https://doi.org/10.1002/mrd.22794.

    Article  CAS  PubMed  Google Scholar 

  27. Demir, R., Şahar, U., & Deveci, R. (2021). Determination of terminal glycan and total monosaccharide profiles of reelin glycoprotein in SH-SY5Y neuroblastoma cell line by lectin blotting and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectrometry system. BBA-Proteins and Proteomics, 1869, 140559 https://doi.org/10.1016/j.bbapap.2020.140559.

    Article  CAS  PubMed  Google Scholar 

  28. Deveci, R., Şener, E., & İzzetoğlu, S. (2015). Morphological and ultrastructural characterization of sea urchin immune cells. Journal of Morphology, 276, 583–588. https://doi.org/10.1002/jmor.20368.

    Article  PubMed  Google Scholar 

  29. İzzetoğlu, S., & Karaçalı, S. (2012). The determination of N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) types of sialic acids in hematopoietic organ of the silkworm. Bombyx mori L. (Lepidoptera: Bombycidae). Kafkas Univ. Vet. Fak. Derg, 18(1), 147–150. https://doi.org/10.9775/kvfd.2011.5257.

    Article  Google Scholar 

  30. Pisano, A., Packer, N. H., Redmond, J. W., Williams, K. L., & Gooley, A. A. (1994). Characterization of O-linked glycosylation motifs in the glycopeptide domain of bovine K-casein. Glycobiology, 4(6), 837–844. https://doi.org/10.1093/glycob/4.6.837.

    Article  CAS  PubMed  Google Scholar 

  31. Atassi M. Z., Appella E. (1995) Methods in protein structure analysis, Springer Science+Business Media, New York.

  32. Anumula, K. R., & Du, P. (1999). Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins. Analytical Biochemistry, 275, 236–242. https://doi.org/10.1006/abio.1999.4323.

    Article  CAS  PubMed  Google Scholar 

  33. Karve, T. M., & Cheema, A. K. (2011). Small changes huge impact: the role of proteinposttranslational modifications in cellular homeostasis and disease. J. of Amino Acids, 207691, 1–13. https://doi.org/10.4061/2011/207691.

    Article  CAS  Google Scholar 

  34. Cejas, R. B., Lorenz, V., Garay, Y. C., & Irazoqui, F. J. (2019). Biosynthesis of O-N-acetylgalactosamine glycans in the human cell nucleus. J. Biol. Chem, 294(9), 2997–3011. https://doi.org/10.1074/jbc.RA118.005524.

    Article  CAS  PubMed  Google Scholar 

  35. Moir, R. D., Spann, T. P., Lopez-Soler, R. I., Yoon, M., Goldman, A. E., Khuon, S., & Goldman, R. D. (2000). The dynamics of the nuclear lamins during the cell cycle—Relationship between structure and function. Journal of Structural Biology, 129, 324–334. https://doi.org/10.1006/jsbi.2000.4251.

    Article  CAS  PubMed  Google Scholar 

  36. Kochin, V., Shimi, T., Torvaldson, E., Adam, S. A., Goldman, A., Pack, C., Melo-Cardenas, J., Imanishi, S. Y., Goldman, R. D., & Eriksson, J. E. (2014). Interphase phosphorylation of lamin A. J. Cell Sci., 127, 2683–2696. https://doi.org/10.1242/jcs.141820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, S., Huang, X., Sun, D., **n, X., Pan, Q., Peng, S., Liang, Z., Luo, C., Yang, Y., Jiang, H., Huang, M., Chai, W., Ding, J., & Geng, M. (2012). Extensive crosstalk between O-GlcNacylation and phosphorylation regulates Akt signaling. PlosOne, 7(5), e37427 https://doi.org/10.1371/journal.pone.0037427.

    Article  CAS  Google Scholar 

  38. Ferraro, A., Eufemi, M., Cervoni, L., Marinetti, R., & Turano, C. (1989). Glycosylated forms of nuclear lamins. FEBS Letters, 257(2), 241–246. https://doi.org/10.1016/0014-5793(89)81543-1.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Z., Udeshi, N. D., Slawson, C., Compton, P. D., Sakabe, K., Cheung, W. D., Shabanowitz, J., Hunt, D. F., & Hart, G. W. (2010). Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Science Signaling, 3(104), 1–12. https://doi.org/10.1126/scisignal.2000526.

    Article  CAS  Google Scholar 

  40. Alfaro, J. F., Gong, C. X., Monroe, M. E., Aldrich, J. T., Clauss, T. R., Purvine, S. O., Wang, Z., Camp, D. G., Shabanowitz, J., Stanley, P., Hart, G. W., Hunt, D. F., Yang, F., & Smith, R. D. (2012). Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc. Natl. Acad. Sci., 109(19), 7280–7285. https://doi.org/10.1073/pnas.120042510989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Simon, D. N., Wriston, A., Fan, Q., Shabanowitz, J., Florwick, A., Dharmaraj, T., Peterson, S. B., Gruenbaum, Y., Carlson, C. R., Grønning-Wang, L. M., Hunt, D. F., & Wilson, K. L. (2018). OGT (O-GlcNAc Transferase) selectively modifies multiple residues unique to lamin A. Cells, 7(5), 1–21. https://doi.org/10.3390/cells7050044.

    Article  CAS  Google Scholar 

  42. Hart, G. W., Holt, G. D., & Haltiwanger, R. S. (1988). Nuclear and cytoplasmic glycosylation: novel saccharide linkages in unexpected places. Trends in Biochemical Sciences, 13(10), 380–384. https://doi.org/10.1016/0968-0004(88)90179-X.

    Article  CAS  PubMed  Google Scholar 

  43. Haltiwanger, R. S., Kelly, W. G., Roquemore, E. P., Blomberg, M. A., Dong, L. Y. D., Kreppel, L., & Hart, G. W. (1992). Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem. Soc. Trans, 20, 264–269. https://doi.org/10.1042/bst0200264.

    Article  CAS  PubMed  Google Scholar 

  44. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., & Brunak, S. (2004). Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 4, 1633–1649. https://doi.org/10.1002/pmic.200300771.

    Article  CAS  PubMed  Google Scholar 

  45. Hart, G. W., Housley, M. P., & Slawson, C. (2007). Cycling of O-linked β-N acetylglucosamine on nucleocytoplasmic proteins. Nature, 446(7139), 1017–1022. https://doi.org/10.1038/nature05815.

    Article  CAS  PubMed  Google Scholar 

  46. Varki, A. (2007). Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature, 446(7139), 1023–1029. https://doi.org/10.1038/nature05816.

    Article  CAS  PubMed  Google Scholar 

  47. Hart, G. W. (1997). Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annual Review of Biochem, 66(1), 315–335. https://doi.org/10.1146/annurev.biochem.66.1.315.

    Article  CAS  Google Scholar 

  48. Li, B., & Kohler, J. J. (2014). Glycosylation of the nuclear pore. Traffic, 15, 347–361. https://doi.org/10.1111/tra.12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. West, C. M., Van Der Wel, H., & Gaucher, E. A. (2002). Complex glycosylation of Skp1 in Dictyostelium: implications for the modification of other eukaryotic cytoplasmic and nuclear proteins. Glycobiology, 12(2), 17R–27R. https://doi.org/10.1093/glycob/12.2.17R.

    Article  CAS  PubMed  Google Scholar 

  50. Bond, M. R., & Hanover, J. A. (2015). A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol, 208, 869–880. https://doi.org/10.1083/jcb.201501101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davis, L. I., & Blobel, G. (1987). Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci, 84(21), 7552–7556. https://doi.org/10.1073/pnas.84.21.7552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferraro, A., Grandi, P., Eufemi, M., Altieri, F., Cervoni, L., & Turano, C. (1991). The presence of N-glycosylated proteins in cell nuclei. Biochemical and Biophysical Research Communications, 178(3), 1365–1370. https://doi.org/10.1016/0006-291X(91)91044-D.

    Article  CAS  PubMed  Google Scholar 

  53. Lefebvre, T., Ferreira, S., Dupont-Wallois, L., Bussiere, T., Dupire, M. J., Delacourte, A., & Caillet-Boudin, M. L. (2003). Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins- a role in nuclear localization. BBA-General Subjects, 1619(2), 167–176. https://doi.org/10.1016/S0304-4165(02)00477-4.

    Article  CAS  PubMed  Google Scholar 

  54. Yang, Z., Halim, A., Narimatsu, Y., Jitendra Joshi, H., Steentoft, C., Schjoldager, K. T., Alder Schulz, M., Sealover, N. R., Kayser, K. J., Bennett, E. P., Levery, S. B., Vakhrushev, S. Y., & Clausen, H. (2014). The GalNAc-type O-glycoproteome of CHO cells characterized by the SimpleCell strategy. Mol. Cell. Proteomics, 13, 3224–3235. https://doi.org/10.1074/mcp.M114.041541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Uslupehlivan, M., Şener, E., & Deveci, R. (2018). In silico analysis of Pax6 protein glycosylation in vertebrates. Comput. Biol. Chem, 77, 116–122. https://doi.org/10.1016/j.compbiolchem.2018.09.016.

    Article  CAS  PubMed  Google Scholar 

  56. Varki A., Cummings R. D., Esko J. D., Freeze H. H., Stanley P., Bertozzi C. R., Hart G. W., Etzler M. E. (2009). Essentials of Glycobiology, second ed., Cold Spring Harbor Laboratory Press, New York.

  57. Taylor M. E., Drickamer K. (2011) Introduction to Glycobiology, third ed., Oxford: University Press, UK.

  58. Clements, L., Manilal, S., Love, D. R., & Morris, G. E. (2000). Direct interaction between emerin and lamin A. Biochemical and Biophysical Research Communications, 267(3), 709–714. https://doi.org/10.1006/bbrc.1999.2023.

    Article  CAS  PubMed  Google Scholar 

  59. Lee, K. K., Haraguchi, T., Lee, R. S., Kou**, T., Hiraoka, Y., & Wilson, K. L. (2001). Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. of Cell Sci., 114(24), 4567–4573. https://doi.org/10.1242/jcs.114.24.4567.

    Article  CAS  Google Scholar 

  60. Sakaki, M., Koike, H., Takahashi, N., Sasagawa, N., Tomioka, S., Arahata, K., & Ishiura, S. (2001). Interaction between emerin and nuclear lamins. Journal of Biochemistry, 129(2), 321–327. https://doi.org/10.1093/oxfordjournals.jbchem.a002860.

    Article  CAS  PubMed  Google Scholar 

  61. Brachner, A., Reipert, S., Foisner, R., & Gotzmann, J. (2005). LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. Journal of Cell Science, 118(24), 5797–5810. https://doi.org/10.1242/jcs.02701.

    Article  CAS  PubMed  Google Scholar 

  62. Mansharamani, M., & Wilson, K. L. (2005). Direct binding of nuclear membrane protein MAN1 to emerin in vitro and two modes of binding to barrier-to-autointegration factor. J. Biol. Chem, 280(14), 13863–13870. https://doi.org/10.1074/jbc.M413020200.

    Article  CAS  PubMed  Google Scholar 

  63. Varki, A. (1997). Sialic acids as ligands in recognition phenomena. FASEB J, 11(4), 248–255. https://doi.org/10.1096/fasebj.11.4.9068613.

    Article  CAS  PubMed  Google Scholar 

  64. Varki, A. (2017). Biological roles of glycans. Glycobiology, 27(1), 3–49. https://doi.org/10.1093/glycob/cww086.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou, X., Yang, G., & Guan, F. (2020). Biological functions and analytical strategies of sialic acids in tumor. Cells, 9(2), 273 https://doi.org/10.3390/cells9020273. 1-18.

    Article  CAS  PubMed Central  Google Scholar 

  66. Higel, F., Seidl, A., Sörgel, F., & Friess, W. (2016). N-Glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur. J. of Pharmaceutics and Biopharmaceutics, 100, 94–100. https://doi.org/10.1016/j.ejpb.2016.01.005.

    Article  CAS  Google Scholar 

  67. Strahl-Bolsinger, S., Gentzsch, M., & Tanner, W. (1999). Protein O-mannosylation. Biochimica et Biophysica Acta, 1426, 297–307. https://doi.org/10.1016/S0304-4165(98)00131-7.

    Article  CAS  PubMed  Google Scholar 

  68. Larsen, I. S. B., Narimatsu, Y., Joshi, H. J., Yang, Z., Harrison, O. J., Brasch, J., Shapiro, L., Honig, B., Vakhrushev, S., Clausen, H., & Halim, A. (2017). Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. J. Biol. Chem, 292(27), 11586–11598. https://doi.org/10.1074/jbc.M117.794487.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Loibl, M., & Strahl, S. (2013). Protein O-mannosylation: What we have learned from baker’s yeast. Biochimica et Biophysica Acta, 1833, 2438–2446. https://doi.org/10.1016/j.bbamcr.2013.02.008.

    Article  CAS  PubMed  Google Scholar 

  70. Barresi, R., & Campbell, R. (2006). Dystroglycan: from biosynthesis to pathogenesis of human disease. Journal of Science, 119(2), 199–207. https://doi.org/10.1242/jcs.02814.

    Article  CAS  Google Scholar 

  71. Praismann, J. L., & Wells, L. (2014). Mammalian O-mannosylation pathway: glycan structures, enzymes, and protein substrates. Biochemistry, 53, 3066–3078. https://doi.org/10.1021/bi500153y.

    Article  CAS  Google Scholar 

  72. Vester-Christensen, M. B., Halim, A., Joshi, H. J., Steentoft, C., Bennett, E. P., Levery, S. B., Vakhrushev, S. Y., & Clausen, H. (2013). Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. PNAS, 110(52), 21018–21023. https://doi.org/10.1073/pnas.1313446110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hozak, P., Sasseville, A. M. J., Raymond, Y., & Cook, P. R. (1995). Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. Journal of Cell Science, 108(2), 635–644. https://doi.org/10.1242/jcs.108.2.635.

    Article  CAS  PubMed  Google Scholar 

  74. Cohen, M., Santarella, R., Wiesel, N., Mattaj, I., & Gruenbaum, Y. (2008). Electron microscopy of lamin and the nuclear lamina in Caenorhabditis elegans. Methods in Cell Biology, 88, 411–429. https://doi.org/10.1016/S0091-679X(08)00421-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ege University Scientific Research Projects Coordination (grant number 17-FEN-031).

Author information

Authors and Affiliations

Authors

Contributions

E.Ş.U. performed all the experiments and wrote the manuscript, R.D. performed the TEM preparation studies, U.Ş. performed the CapLC-ESI-MS/MS analysis, S.İ. obtained the TEM micrographs and supervised the project. All authors reviewed the manuscript.

Corresponding author

Correspondence to Savaş İzzetoğlu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şener Uslupehlivan, E., Deveci, R., Şahar, U. et al. Glycan analysis of Lamin A/C protein at G2/M and S phases of the cell cycle. Cell Biochem Biophys 80, 689–698 (2022). https://doi.org/10.1007/s12013-022-01102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01102-3

Keywords

Navigation