Log in

Laminin-411 and -511 Modulate the Proliferation, Adhesion, and Morphology of Gastric Cancer Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Laminins (Ln), a type of extracellular matrix glycoprotein, are key regulators of cellular behavior. Recent work revealed that in various tumor cell lines, laminin isoforms influence specific responses, such as cell anchorage, survival, proliferation, migration, organization, and specialization. The contribution of laminin isoforms to the function of gastric cancer cells, however, remain unclear. Here, we revealed that in gastric cancer, laminin isoforms Ln411, Ln421, Ln511, and Ln521 promote cellular proliferation; Ln511 and Ln521 increase cell cytoplasmic volume; Ln511 hampers invadopodia formation in some cells, Ln511 enables prompt adhesion of cells to plates, and Ln411 and Ln511 do not alter the gastric cancer stem cell markers CD44 and Lgr5. These results indicate that Ln411 and Ln511 dynamically modulate the proliferation, adhesion, and morphology of gastric cancer cells in different ways that are independent of stem cell properties. In particular, Ln511 showed a high affinity for gastric cancer cells. Our observations broaden the possible options for controlling cancer cell progression and metastasis by modulating laminin-integrin interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Miner, J. H., Patton, B. L., Lentz, S. I., Gilbert, D. J., Snider, W. D., Jenkins, N. A., Copeland, N. G., & Sanes, J. R. (1997). The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform. Journal of Cell Biology, 137(3), 685–701.

    Article  CAS  Google Scholar 

  2. Durbeej, M. (2010). Laminins. Cell and Tissue Research, 339(1), 259–68.

    Article  CAS  Google Scholar 

  3. Cloutier, G., Sallenbach-Morrissette, A., & Beaulieu, J. F. (2019). Non-integrin laminin receptors in epithelia. Tissue and Cell, 56, 71–8.

    Article  CAS  Google Scholar 

  4. Yamada, M., & Sekiguchi, K. (2015). Molecular basis of laminin-integrin interactions. Current Topics in Membranes, 76, 197–229.

    Article  CAS  Google Scholar 

  5. Ishikawa, T., Wondimu, Z., Oikawa, Y., Gentilcore, G., Kiessling, R., Egyhazi Brage, S., Hansson, J., & Patarroyo, M. (2014). Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biology, 38, 69–83.

    Article  CAS  Google Scholar 

  6. Kato, R., Iwamuro, M., Shiraha, H., Horiguchi, S., Tanaka, E., Matsumoto, K., Ohyama, A., Sawahara, H., Nagahara, T., Uchida, D., Tsutsumi, K., & Okada, H. (2018). Dipeptide γ-secretase inhibitor treatment enhances the anti-tumor effects of cisplatin against gastric cancer by suppressing cancer stem cell properties. Oncology Letters, 16(4), 5426–32.

    PubMed  PubMed Central  Google Scholar 

  7. Kikkawa, Y., Sanzen, N., & Sekiguchi, K. (1998). Isolation and characterization of laminin-10/11 secreted by human lung carcinoma cells. laminin-10/11 mediates cell adhesion through integrin alpha3 beta1. Journal of Biological Chemistry, 273(25), 15854–9.

    Article  CAS  Google Scholar 

  8. Ferletta, M., & Ekblom, P. (1999). Identification of laminin-10/11 as a strong cell adhesive complex for a normal and a malignant human epithelial cell line. Journal of Cell Science, 112(Pt 1), 1–10.

    Article  CAS  Google Scholar 

  9. Pouliot, N., & Kusuma, N. (2013). Laminin-511: a multi-functional adhesion protein regulating cell migration, tumor invasion and metastasis. Cell Adhesion & Migration, 7(1), 142–149.

    Article  Google Scholar 

  10. Miner, J. H., & Yurchenco, P. D. (2004). Laminin functions in tissue morphogenesis. Annual Review of Cell and Developmental Biology, 20, 255–84.

    Article  CAS  Google Scholar 

  11. Kong, D. (2011). Cancer stem cells & epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers, 3(1), 716–29.

    Article  Google Scholar 

  12. Wang, S. S., Jiang, J., Liang, X. H., & Tang, Y. L. (2015). Links between cancer stem cells and epithelial-mesenchymal transition. OncoTargets and Therapy, 8, 2973–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Takatsuki, H., Komatsu, S., Sano, R., Takada, Y., & Tsuji, T. (2004). Adhesion of gastric carcinoma cells to peritoneum mediated by alpha3beta1 integrin (VLA-3). Cancer Research, 64(17), 6065–70.

    Article  CAS  Google Scholar 

  14. Nishiuchi, R., Takagi, J., Hayashi, M., Ido, H., Yagi, Y., Sanzen, N., Tsuji, T., Yamada, M., & Sekiguchi, K. (2006). Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biology, 25(3), 189–97.

    Article  CAS  Google Scholar 

  15. Fujiwara, H., Kikkawa, Y., Sanzen, N., & Sekiguchi, K. (2001). Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3beta1 and alpha6beta1 integrins. Journal of Biological Chemistry, 276(20), 17550–8.

    Article  CAS  Google Scholar 

  16. Fujiwara, H., Gu, J., & Sekiguchi, K. (2004). Rac regulates integrin-mediated endothelial cell adhesion and migration on laminin-8. Experimental Cell Research, 292(1), 67–77.

    Article  CAS  Google Scholar 

  17. Kawataki, T., Yamane, T., Naganuma, H., Rousselle, R., Anduren, I., Tryggvason, K., & Patarroyo, M. (2007). Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Experimental Cell Research, 313(18), 3819–31.

    Article  CAS  Google Scholar 

  18. Takkunen, M., Ainola, M., Vainionpaa, N., Grenman, R., Patarroyo, M., Garcia de Herreros, A., Konttinen, Y. T., & Virtanen, I. (2008). Epithelial-mesenchymal transition downregulates laminin alpha5 chain and upregulates laminin alpha4 chain in oral squamous carcinoma. Histochemistry and Cell Biology, 130(3), 509–25.

    Article  CAS  Google Scholar 

  19. Oikawa, Y., Hansson, J., Sasaki, T., Rousselle, P., Domogatskaya, A., Rodin, S., Tryggvason, K., & Patarroyo, M. (2011). Melanoma cells produce multiple laminin isoforms and strongly migrate on α5-laminin(s) via several integrin receptors. Experimental Cell Research, 317(8), 1119–33.

    Article  CAS  Google Scholar 

  20. Friedl, P., & Wolf, K. (2009). Proteolytic interstitial cell migration: a five-step process. Cancer and Metastasis Reviews, 28(1-2), 129–35.

    Article  Google Scholar 

  21. Linder, S. (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends in Cell Biology, 17(3), 107–17.

    Article  CAS  Google Scholar 

  22. Lee, M. S., Kim, S., Kim, B. G., Won, C., Nam, S. H., Kang, S., Kim, H. J., Kang, M., Ryu, J., Song, H. E., Lee, D., Ye, S. K., Jeon, N. L., Kim, T. Y., Cho, N. H., & Lee, J. W. (2014). Snail1 induced in breast cancer cells in 3D collagen I gel environment suppresses cortactin and impairs effective invadopodia formation. Biochimica et Biophysica Acta, 1843(9), 2037–54.

    Article  CAS  Google Scholar 

  23. Coopman, P. J., Do, M. T., Thompson, E. W., & Mueller, S. C. (1998). Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. Clinical Cancer Research, 4(2), 507–15.

    CAS  PubMed  Google Scholar 

  24. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation, 119(6), 1420–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Iwamuro.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwamuro, M., Shiraha, H., Oyama, A. et al. Laminin-411 and -511 Modulate the Proliferation, Adhesion, and Morphology of Gastric Cancer Cells. Cell Biochem Biophys 79, 407–418 (2021). https://doi.org/10.1007/s12013-021-00972-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00972-3

Keywords

Navigation