Log in

Susceptibility and REF1 Gene Polymorphism Towards Colorectal Cancer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Published data on the relation between REF1 polymorphism and colorectal cancer risk showed inconclusive results. The aim of this study was to derive a comprehensive estimation of the association. Data on association between REF1 polymorphism and colorectal cancer risk were summarized. The association was estimated by calculating an odds ratio (OR) with corresponding 95 % confidence interval (95 % CI) with the fixed effects model when P > 0.1 (from heterogeneity test) or with the random effects model when P < 0.1. No significant association was revealed in any genetic model assumed for the overall analysis (OR = 1.03, 95 % CI = 0.81–1.32 for Glu/Glu vs. Asp/Asp; OR = 1.05, 95 % CI = 0.96–1.15 for Glu/Glu + Asp/Glu vs. Asp/Asp; OR = 0.97, 95 % CI = 0.76–1.23 for Glu/Glu vs. Asp/Glu + Asp/Asp; OR = 1.03, 95 % CI = 0.92–1.16 for Glu vs. Asp; OR = 1.09, 95 % CI = 0.93–1.27 for Asp/Glu vs. Asp/Asp). In Caucasian population, nor did we find a significant association. This research indicates that REF1 polymorphism is unlikely to be associated with colorectal cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Bibliography

  1. Hung, R. J., et al. (2005). Genetic polymorphisms in the base excision repair pathway and cancer risk: a huge review. American Journal of Epidemiology, 162(10), 925–942.

    Article  PubMed  Google Scholar 

  2. Ferlay, J., et al. (2010). Estimates of worldwide burden of cancer in 2008: globocan 2008. International Journal of Cancer, 127(12), 2893–2917.

    Article  CAS  Google Scholar 

  3. Lichtenstein, P., et al. (2000). Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from sweden, denmark, and finland. New England Journal of Medicine, 343(2), 78–85.

    Article  CAS  PubMed  Google Scholar 

  4. Tenesa, A., & Dunlop, M. G. (2009). New insights into the aetiology of colorectal cancer from genome-wide association studies. Nature Reviews Genetics, 10(6), 353–358.

    Article  CAS  PubMed  Google Scholar 

  5. Houlston, R. S., et al. (2010). Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nature Genetics, 42(11), 973–977.

    Article  CAS  PubMed  Google Scholar 

  6. Hoeijmakers, J. H. (2007). Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mechanisms of Ageing and Development, 128(7–8), 460–462.

    Article  CAS  PubMed  Google Scholar 

  7. Kaina, B. (2003). DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochemical Pharmacology, 66(8), 1547–1554.

    Article  CAS  PubMed  Google Scholar 

  8. de Jong, M. M., et al. (2002). Low-penetrance genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiology Biomarkers and Prevention, 11(11), 1332–1352.

    Google Scholar 

  9. Wood, R. D., et al. (2001). Human DNA repair genes. Science, 291(5507), 1284–1289.

    Article  CAS  PubMed  Google Scholar 

  10. Goode, E. L., Ulrich, C. M., & Potter, J. D. (2002). Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiology Biomarkers and Prevention, 11(12), 1513–1530.

    CAS  Google Scholar 

  11. Lu, A. L., et al. (2001). Repair of oxidative DNA damage: mechanisms and functions. Cell Biochemistry and Biophysics, 35(2), 141–170.

    Article  CAS  PubMed  Google Scholar 

  12. Robson, C. N., et al. (1992). Structure of the human DNA repair gene HAP1 and its localisation to chromosome 14q 11.2-12. Nucleic Acids Research, 20(17), 4417–4421.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Evans, A. R., Limp-Foster, M., & Kelley, M. R. (2000). Going APE over ref-1. Mutation Research, 461(2), 83–108.

    Article  CAS  PubMed  Google Scholar 

  14. Friedberg, E. C. (2003). DNA damage and repair. Nature, 421(6921), 436–440.

    Article  PubMed  Google Scholar 

  15. **, T., Jones, I. M., & Mohrenweiser, H. W. (2004). Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics, 83(6), 970–979.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, J. J., et al. (2001). Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis, 22(6), 917–922.

    Article  CAS  PubMed  Google Scholar 

  17. Hadi, M. Z., et al. (2000). Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Research, 28(20), 3871–3879.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Au, W. W., Salama, S. A., & Sierra-Torres, C. H. (2003). Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environmental Health Perspectives, 111(15), 1843–1850.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Moreno, V., et al. (2006). Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clinical Cancer Research, 12(7 Pt 1), 2101–2108.

    Article  CAS  PubMed  Google Scholar 

  20. Pardini, B., et al. (2008). DNA repair genetic polymorphisms and risk of colorectal cancer in the czech republic. Mutation Research, 638(1–2), 146–153.

    Article  CAS  PubMed  Google Scholar 

  21. Li, Y., et al. (2013). Polymorphisms in genes of APE1, PARP1, and XRCC1: risk and prognosis of colorectal cancer in a northeast chinese population. Medical Oncology, 30(2), 505.

    Article  PubMed  Google Scholar 

  22. Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 719–748.

    CAS  PubMed  Google Scholar 

  23. DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188.

    Article  CAS  PubMed  Google Scholar 

  24. Egger, M., et al. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gao, Y., et al. (2011). DNA repair gene polymorphisms and tobacco smoking in the risk for colorectal adenomas. Carcinogenesis, 32(6), 882–887.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Obtulowicz, T., et al. (2010). Oxidative stress and 8-oxoguanine repair are enhanced in colon adenoma and carcinoma patients. Mutagenesis, 25(5), 463–471.

    Article  CAS  PubMed  Google Scholar 

  27. Kasahara, M., et al. (2008). Association of mutyh Gln324His and APEX1 Asp148Glu with colorectal cancer and smoking in a japanese population. Journal of Experimental Clinical Cancer Research, 27, 49.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ye, Cici, H.Z., Zhou, Chunyan, 2010. APE1 D148E, PARP1 V762A and XRCC1 R399Q polymorphisms and genetic susceptibility to colorectal cancer. World Chinese Journal of Digestology, 18(12), 1275–1279.

  29. Karahalil, B., Bohr, V. A., & Wilson, D. M, 3rd. (2012). Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk. Human and Experimental Toxicology, 31(10), 981–1005.

    Article  CAS  PubMed  Google Scholar 

  30. Berndt, S. I., et al. (2007). Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Research, 67(3), 1395–1404.

    Article  CAS  PubMed  Google Scholar 

  31. Jelonek, K., et al. (2010). Association between single-nucleotide polymorphisms of selected genes involved in the response to DNA damage and risk of colon, head and neck, and breast cancers in a polish population. Journal of Applied Genetics, 51(3), 343–352.

    Article  CAS  PubMed  Google Scholar 

  32. Canbay, E., et al. (2011). Association of APE1 and hOGG1 polymorphisms with colorectal cancer risk in a Turkish population. Current Medical Research and Opinion, 27(7), 1295–1302.

    Article  CAS  PubMed  Google Scholar 

  33. Giovannucci, E. (2001). An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer. Cancer Epidemiology Biomarkers Prevention, 10(7), 725–731.

    CAS  Google Scholar 

  34. Terry, P., et al. (2001). Fruit, vegetables, dietary fiber, and risk of colorectal cancer. Journal of the National Cancer Institute, 93(7), 525–533.

    Article  CAS  PubMed  Google Scholar 

  35. Paz-Elizur, T., et al. (2008). DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Letters, 266(1), 60–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Spitz, M. R., et al. (2003). Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer Epidemiology Biomarkers Prevention, 12(8), 689–698.

    CAS  Google Scholar 

  37. Liu, C., et al. (2013). APE1 Asp148Glu gene polymorphism and bladder cancer risk: a meta-analysis. Molecular Biology Reports, 40(1), 171–176.

    Article  PubMed  Google Scholar 

  38. Wu, B., et al. (2012). Lack of an association between two BER gene polymorphisms and breast cancer risk: a meta-analysis. PLoS ONE, 7(12), e50857.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gu, D., et al. (2009). The DNA repair gene APE1 T1349G polymorphism and cancer risk: a meta-analysis of 27 case-control studies. Mutagenesis, 24(6), 507–512.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, B., et al. (2011). The association of APE1 -656T > G and 1349 T > G polymorphisms and cancer risk: a meta-analysis based on 37 case-control studies. BMC Cancer, 11, 521.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have not declared any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbin **ao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Lai, Y., **ao, L. et al. Susceptibility and REF1 Gene Polymorphism Towards Colorectal Cancer. Cell Biochem Biophys 71, 977–982 (2015). https://doi.org/10.1007/s12013-014-0296-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0296-7

Keywords

Navigation